IMPORTANT PRODUCT INFORMATION

GFK-2992H July 2023

PACSystems[™] RSTi-EP

SERIAL COMMUNICATION MODULE (EP-5261) FUNCTION BLOCK FB_RSTI_EP-5261 HANDLING FUNCTION BLOCK FB_MBM_RTU_MASTER

Warnings and Caution Notes as Used in this Publication

WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

A CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to understanding and operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that Emerson may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering the subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for a particular purpose.

Serial Communication Module EP-5261

The RSTi-EP Serial Communication (EP-5261) module provides extended communication options. For example, devices (such as barcode scanners or printers) can be integrated consistently into RSTi-EP systems using an RS-232, RS-485, or RS-422 interface. The EP-5261 module presents a solution for connecting the control cabinet to the field.

The data transfer rate can be parameterized between 300 and 11,5200 bps. The process data length can be parameterized to be 8 or 16 bytes. A terminating resistor can be parameterized for the RS-485 and RS-422 interface respectively.

The communication status is indicated by two LEDs on the respective plug.

The module electronics supply the connected data terminal device with power from the input current path (IIN) either with 5 V dc or 24 V dc. Both supply voltage outputs are protected against over-current.

The module features a type plate, which includes identification information, the key technical specifications, and a block diagram. Additionally, a QR code allows for direct online access to the associated documentation. The software for reading the QR code must support inverted QR codes.

Markers are available as accessories for labeling the equipment. Each I/O module can be labeled to ensure clear identification when replacing individual modules or electronic units.

The RSTi-EP station is usually installed on a horizontally positioned DIN-rail. Installation on vertically positioned DIN rails is also possible.

Modules should be allowed to de-energize for a minimum of 10 seconds after powering down, before starting any maintenance activity.

Refer to the RSTi-EP Slice I/O User Manual (GFK-2958) for additional information.

For power-feed (a software utility available on PME V9.00) requirements, refer to the RSTi-EP Power Supply Reference Guide.

EP-5261 Module Features

- Spring style technology for ease of wiring
- DIN-rail mounted
- Double-click installation for positive indication of correct installation
- Supports indirect firmware update through the network monitor
- Supports replacement without shutting down the system ordering Information

Ordering Information

Module	Description
EP-5261	RSTi-EP Slice I/O Serial Communication module

Specifications

Specification	EP-5261
System Data	
Data	Process, parameter, and diagnostic data depend on the network
	adapter used
Interface	RSTi-EP system bus
System bus transfer rate	48 Mbps
Serial Interfaces	
Number	1
Туре	RS-232, RS-485, RS-422, parameterisable
Transfer Rate	300 – 11,5200 Bps, parameterisable
Supply voltage	5 V dc or 24 V dc
Current of power supply output	500 mA max
Standards RS232	DIN 66020, DIN 66259, EIA-RS232C, CCITT V.24 / V.28
Standards RS485/RS422	DIN 66259 part 1 and 3, EIA-RS422/485, CCITT V.11
Terminating resistor RS485/RS422	120 Ω, parameterisable
Short-circuit-proof	Yes
Module diagnosis	Yes
Individual channel diagnosis	Yes
Supply	
Supply voltage	20.4 V – 28.8 V
Current consumption from system	δ m Δ
current path ISYS	
Current consumption from input current	16 mA + 1 ord
path IIN	
General Data	
Operating temperature	-20 to +60°C (-4 to +140 °F)
Storage temperature	-40 to +85°C (-40 to +185 °F)
Air humidity (operation/transport)	5 to 95%, noncondensing as per IEC 61131-2
Width	11.5 mm (0.45 in)
Depth	76 mm (2.99 in)
Height	120 mm (4.72 in)
Weight	92 g (3.25 oz)

Current Demand for Analog Output Modules

Product		I _{SYS}	I _{IN}	I _{OUT}	Is	IL			
EP-5261		8 mA	16 mA + Load						
I _{SYS}	Current o	rrent consumption from the system's current path							
I _{IN}	Power co	nsumption from i	nput current path						
Iout	Power co	nsumption from c	output current patl	h					
Is	Current o	lemand of the con	nected sensors						
IL	Current c	Current demand of the connected actuators							
x	Must be included when calculating the power supply								

LEDs

LED	EP-5261 Status								
Modulo Status	Green: Communication over the system bus								
Module Status	Red: Collective error diagnostic								
1 1	Yellow: RS-232 parameterized								
1.1	Yellow flashing: Data is being received								
1 0	Yellow: RS-232 parameterized								
1.2	Yellow flashing: Data is being transmitted								
1.3									
1.4									
2.1									
2.2									
2.3									
2.4									
3.1	3.1 - 3.4 Yellow: RS-422 parameterised								
3.2	3.1 + 3.2 Off, 3.3 + 3.4 Yellow: RS-485 parameterised								
3.3	Yellow flashing: Data are being received								
3.4	Yellow flashing: Data are being transmitted								
4.1	Green: Supply voltage +5 V dc								
4.2									
4.3	Green: Supply voltage +24 V dc								
4.4									

Overview of Editable Parameters

Description	Options ¹	Default							
Operating mode	Disabled (0) / RS232 (1) / RS485 (2) / RS422 (3)	Disabled							
Data bits²	7 Bit (0) / 8 Bit (1)	8 Bit							
	300 (0) / 600 (1) / 1200 (2) / 2400 (3) / 4800 (4) / 9600 (5) / 14400								
Baud rate	(6) /	9600							
	19200 (7) / 28800 (8) / 38400 (9) / 57600 (10) / 115200 (11)								
Stop bit	1 Bit (0) / 2 Bit (1)	1 Bit							
Parity	None (0) / Even (1) / Odd (2)	None							
Flow control	None (0) / CTS/RTS (1) / XON/XOFF (2)	None							
XON character	0 255	17							
XOFF character	0 255	19							
Terminating resistor RS-	Off(0) / Op(1)	Off							
485/422		On							
Process data length	16 Byte (1) 16 Byte								
1) Values in brackets for EtherCAT and Modbus-TCP									
2) Option 7 Bit works only in com	2) Option 7 Bit works only in combination with parity (even or odd)								

Diagnostic Data

Name	Bytes	Bit	Description	Default
		0	Module error	
		1	Internal error	
		2	External error	
Funen in diesten	0	3	Channel error	0
Error Indicator	0	4	Error	
		5	Reserved	0
		6	Reserved	0
		7	Parameter error	
		0		1
		1		0
		2		1
		3		0
Module type	1	4	Reserved	0
		5	Reserved	0
		6	Reserved	0
		7	Reserved	0
Error byte 2	2	0-7	Reserved	0
		0-2	Reserved	0
Error byte 3	3	3	Internal diagnostic FIFO full	0
		4-7	Reserved	0
		0		1
		1		0
		2		0
Channel trine	4	3	Channel type 0v70	1
Channel type	4	4	Channel type 0x79	1
		5		1
		6	-	1
		7		0
Diagnostic bits per channel	5		Number of diagnostic bits per channel	0
Number of channels	6		Number of similar channels per module	1
Channel error	7-10	0-31	Reserved	0
Timestamp	43-46	1	Timestamp [μs] (32 bit)	

Data Transfer

The process data length can be parameterized to be 8 or 16 Bytes. Byte 0 is used for status and diagnosis, Byte 1 for the data segment length, and the remaining 6 or 14 Bytes are user data.

Process input data: The data sent from the serial device are written into the receive memory of the module. As soon as the SPS request results in that RX_CNT is not equal to RX_CNT_ACK, the data will be sent in segments via the Fieldbus coupler to the PLC. The successful data transfer will be acknowledged by the module.

The receive memory can save a maximum of 255 Bytes. A software handshake (XON/XOFF) or a hardware handshake (RTS/CTS) can be parameterized using the flow control so that an alarm will warn against a buffer overflow.

Process output data: The data sent from the PLC via the Fieldbus coupler are written into the transmission memory of the module. The module is continuously checking if data is ready to be sent or if a data transfer to the device has been completed successfully. Not until then will the next data will be transferred.

Byte	Format	Name	Bit	Description	Notes				
			IX0.0	Data in the receive buffer	RX = 0: Receive buffer is empty RX = 1: A telegram or telegram segment in the receive buffer is ready for transmission.				
			IX0.1	Receive buffer nearly full	Only 10 characters are left in the receive buffer. XOFF will be set if parametrerised.				
			IX0.2	For Internal Use					
			IX0.3	RX_CNT	The RX_CNT value is assigned to each data segment of the process input data while transmission. The sequence or the RX_CNT values is: Binary: 00, 01, 10, 11, 00, Decimal: 0, 1, 2, 3, 0, A faulty data sequence indicates missing data segments.				
IBO	Word Status an Diagnosi	Status and Diagnosis	IX0.4	RX_CNT					
			IX0.5	TX_CNT_ACK	The TX_CNT_ACK value is a copy of the TX_CNT value, which has been transferred together with the last				
			IX0.6	TX_CNT_ACK	TX_CNT_ACK acknowledges that the data has been taken over successfully.				
			IX0.7	STAT	STAT = 1: Communication with the device is without fault. STAT = 0: Faulty communication with the device.				
IB1	Word	Length of the data segment / of the subsequent diagnosis data		RX	Length of the data/diagnosis data in this frame				

Process Input Data

Byte	Format	Name	Bit	Description	Notes
				User data of the	
IB 2 IB 7		De seive d'alsta		transferred	
	B 15	Received data		telegram	
IB 2 IB 15				segment	

Process Output Data

Byte	Format	Name	Bit	Description	Remarks
			QX0.0	RXBUF FLUSH	Bit 0: RXBUF FLUSH The receive buffer can be cleared using this bit. STATRES = 1: A requirement with RXBUF FLUSH = 1 will be ignored. STATRES = 0: The receive memory will be scrubbed with RXBUF FLUSH = 1.
			QX0.1	TXBUF FLUSH	Bit 1: TXBUF FLUSH The transmit buffer can be cleared using this bit. STATRES = 1: A requirement with TXBUF FLUSH = 1 will be ignored. STATRES = 0: The emission memory will be scrubbed with TXBUF FLUSH = 1.
QBO V	Word	Status and Diagnosis	QX0.2	RX_HWBUFFER	Bit 2: DisableSend_TX_HWBUFFER This bit controls the hardware transmit buffer: DisableSend_TX_HWBUFFER = 0: The hardware transmit buffer is released. A character (Byte) will be sent as soon as it reaches the buffer. DisableSend_TX_HWBUFFER = 1: The hardware transmit buffer is locked. Characters (Bytes) will only be sent, when DisableSend_TX_HWBUFFER is set to 0 again.
			QX0.3	TX_CNT	The TX_CNT value is assigned to each data segment of the process output data. The sequence or the TX_CNT values is:
			QX0.4	TX_CNT	Decimal: 0->1->2->3->0 A faulty data sequence indicates missing data segments.
			QX0.5	RX_CNT_ACK	RX_CNT_ACK must include a copy of the RX_CNT value. The RX_CNT value has been transferred together with the
			QX0.6	RX_CNT_ACK	RX_CNT_ACK must be set in analogy with RX_CNT (in the status byte). It indicates that the data segment has been transferred successfully by using RX_CNT and enables receiving of new data.

Byte	Format	Name	Bit	Description	Remarks
			QX0.7	STATRES	The input data status bit STAT will be reset using this bit. When changing from 1 to 0 (falling edge) STAT will be reset from 0 to 1. STAT = 0: All changes in the data fields TX_BYTE_CNT, TX_CNT, and RX_CNT_ACK will be ignored. The receive or transmit buffer can be cleared using RXBUF FLUSH or TXBUF FLUSH respectively. STAT = 1 or changing from 0 to 1: The buffers cannot be cleared.
QB1	Word	TX_BYTE_CNT			
QB 2 QB 7 or QB 2 QB 15		Transmission data		User data of the transferred telegram segment	

Enabling the Data Transfer

There are ways to announce the communication module to the control. Using the test mode, you only copy the input data into the output data of the module so the received data will be sent again. Or, select one of the function blocks provided by your engineering tool. For programming, refer to the following flow charts showing the sequences for receiving and transmission.

Figure 1: Receiving Sequence Figure 2: Transmission Sequence START START STATRES = 1 STATRES = 1 STATRES = 0 STATRES = 0 STAT=1 STAT=1 Read diagnosis Read diagnosis no no yes yes RX_CNT Transmit data No receive-data = RX_CNT_ACK present being present? ves no yes no RX CNT SPS application error TX_CNT $= (RX_CNT_ACK + 1)$ Segment-sequence error = TX_CNT_ACK no no MOD4 ŧ yes yes Error save/note! n = RX_BYTE_CNT Data byte [] = TX-Data RX-Data = Data byte [] $TX_BYTE_CNT = n$ RX_CNT_ACK = RX_CNT TX_CNT = (TX_CNT+1) MOD4

The status and control word values during various states of communication are provided in the following table.

Status and Control Word Variables

Action	Input Byte 0 (Status) of Module					Input	Output byte 0 (control) of the module				Output	Notes							
Action	7	6	5	4	3	2	1	0	Byte 1	7	6	5	4	3	2	1	0	byte 1	
	Stat	TX_CN	IT_ACK	RX_	CNT				(length of RX byte seg.)	STAT RES	RX_CN	T_ACK	TX_C	NT				(length of TX byte seg.)	
Init/ Startup	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	After powerup, module is ready for communi- cation
Activate communi- cation	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	PLC is ready for communi-cation (response)
Pocoivo	1	0	0	0	1	0	0	0	N (114)	1	0	0	0	0	0	0	0	0	Module has received bytes
data	1	0	0	0	1	0	0	0	N	1	0	1	0	0	0	0	0	0	RX acknow-ledge after data taken over
Send	1	0	0	0	1	0	0	0	x	1	0	1	0	1	0	0	0	N (114)	Before changing TX-CNT, set TX bytes
data	1	0	1	0	1	0	0	0	x	1	0	1	0	1	0	0	0	Ν	TX acknow-ledge after module sent data

Field Wiring

The connection frame can take up to four connectors (shown in the following figure), and four wires can be connected to each connector. The Spring style technology allows either finely stranded or solid wire conductors with crimped wire-end ferrules or ultrasonically welded wires, each with a maximum cross-section of 1.5 mm² (16 gauge), to be inserted easily through the opening in the clamping terminal without having to use tools. To insert fine stranded wires without wire-end ferrules, the pusher must be pressed in with a screwdriver and released to latch the wire.

Figure 3: Connector Block with Four Wire Connectors

Connector Specifications

- Conductor cross-section 0.14 to 1.5 mm² (26 16 gauge)
- 10 A max amperes
- 4-pole

The modules do not have a fused sensor/activator power supply. All cables to the connected sensors/actuators must be fused corresponding to their conductor cross-sections (as per Standard DIN EN 60204-1, section 12).

Connection Cables for the Serial Device

Use shielded cables, because electromagnetic interferences from the surroundings have to be assumed. The maximum permissible cable length depends on the cable capacitance and the baud rate.

Connecting RS-232 Device

Maximum Cable Length RS-232

Cable Capacitance	Maximum Cable Length
≤ 2500 pF	15 m (49 ft), shielded
55 pF/m	45 m (147 ft)

Connecting RS-485 OR RS-422 Device

The serial device must be connected using a twisted pair cable (U/UTP, Type Cat- 3 or J-2YY-2x2x0,6).

Maximum Cable Length RS-422/485

Baud Rate in kbps	Maximum Cable Length
≤ 19200	1200 m (3937 ft), shielded
38400	500 m (1640 ft)
57600	250 m (820 ft)
115200	200 m (656 ft)

- **RS-485**: Use one core pair for Data+/Data-; use any wire for the ground signal GND COM. The remaining free wires should be connected to the ground.
- **RS-422:** Connect the wires for transmitting signals TXD+/TXD– and those for receiving signals RXD+/RXD– in pairs respectively. Use any wire for the ground signal GND COM. The remaining free wires should be connected to the ground.
- **Note:** Refer to the *RSTi-EP Slice I/O User Manual* (GFK-2958) for additional information. Technical assistance is available at <u>https://www.emerson.com/Industrial-Automation-Controls/support</u>.

Installation in Hazardous Areas

A WARNING

- EQUIPMENT LABELED CONCERNING CLASS I, GROUPS A, B, C & D, DIV. 2 HAZARDOUS AREAS IS SUITABLE FOR USE IN CLASS I, DIVISION 2, GROUPS A, B, C, D OR NON-HAZARDOUS AREAS ONLY
- EXPLOSION HAZARD SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2;
- EXPLOSION HAZARD WHEN IN HAZARDOUS AREAS, TURN OFF POWER BEFORE REPLACING OR WIRING
 MODULES; AND
- EXPLOSION HAZARD DO NOT CONNECT OR DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NONHAZARDOUS.

ATEX Marking

🐼 II 3 G Ex nA IIC T4 Gc

Ta: -20 to +60°C (-4 to +140 °F)

Connection Diagrams

Figure 4: EP-5261 Module Connections

Connection Block Diagrams

Functional Blocks for Enabling Serial Communication

The serial communication module uses 8 registers of input memory and 8 registers of output memory to send and receive the data to any serial device. Function blocks are provided as part of the tool chest drawer to enable faster implementation of serial communication with fewer efforts on application development.

Figure 6: Toolchest Structure

Note: The tool chest drawer is available for download from the support site at https://www.emerson.com/Industrial-Automation-Controls/support. The import of the Toolchest drawer (RSTi-EP xxxx.ZDRW) in the PAC Machine Edition project, throws a warning message – "Missing blocks MODtimeOut and Inst_FB_EP5261". Ignore this warning and continue to import the blocks.

FB Description	Major Version	Minor version
FB_MBM_RTU_Master	2	0
FB_RSTI_EP_5261	1	0
ModbusMaster_CoilMax	1	0

Revisions of Serial communication Function blocks:

The function block FB_RSTI_EP_5261 is used to send and receive byte strings of lengths up to 400 bytes. The function block can send 400 bytes of data and receive 400 bytes of data. The length of the data to be received and sent is determined by the input parameter of the function block.

The function block FB_MBM_RTU_Master is used to send and receive Modbus messages with the support of the FB_RSTI_EP_5261 function block. The RTU master function block reads the user inputs and creates Modbus messages. The byte string is then input to the function block FB_RSTI_EP_5261 which in turn outputs the bytes on the serial bus.

The response is received by FB_RSTI_EP_5261 and passed as input to the RTU master to parse the response and update the data to internal controller memory.

The function block ModbusMaster_CoilMax is internally used by the RTU master function block.

Note: Refer to the respective function block section in this document for more information on the input and output parameters of the serial and RTU master function blocks.

Procedure to Import <u>RSTi-EP Serial Comm blocks.ZDRW</u> (v1.00 and later releases)

If only serial communication is required for the application, perform the following steps:

- 1. Import the UDT's EP5261_Data into the controller target.
- 2. Import the block *FB_RSTI_EP_5261* to the controller target.
- 3. Call the block *FB_RSTI_EP_5261* in the application logic.

If Modbus RTU communication is used for the application, perform the following steps:

- 1. Import the UDT's EP5261_Data & MBM_Data into the controller target.
- 2. Import the blocks in the following sequence as follows:
 - a. ModbusMaster_CoilMax
 - b. FB_RSTI_EP_5261
 - c. FB_MBM_RTU_Master
 - d. Call the block FB_MBM_RTU_Master in the application logic.

Procedure to Import <u>RSTi-EP Serial Comm blocks.ZDRW</u> (v1.00 and later Releases)

The symbolic variables are assigned to the inputs and outputs of the function blocks FB_RSTI_EP_5261 and FB_MBM_RTU_Master.

To invoke serial and RTU master functions blocks

If only serial communication is required for the application, perform the following steps:

- 1. Import the UDT *Ser_Data* to the controller target.
- 2. Import the block *FB_RSTI_EP_5261* to the controller target.
- 3. Call the block *FB_RSTI_EP_5261* in the application logic.

If Modbus RTU communication is to be used,

- 1. Import the UDT's Ser_Data and MBM_Data into the controller target.
- 2. Import the blocks in the following sequence as follows:
 - a. ModbusMaster_CoilMax
 - b. FB_RSTI_EP_5261
 - c. FB_MBM_RTU_Master
- 3. Call the block FB_MBM_RTU_Master in the application logic.

Function Block FB_RSTI_EP-5261

The RSTi-EP Function Block (FB_RSTI_EP_5261) can be used for the data handling of the serial interface module EP-5261 (1 Channel Serial Communications, RS-232, 422, 485). It supports simultaneous transmitting and receiving of data (full-duplex mode). For example, using RS-232 mode is possible. As only the input and output data are evaluated, this block can be chosen regardless of the type of interface used.

To enable data transmission using FB_RSTI_EP_5261, a User Defined Type Ser_Data must be imported.

Additionally, each array must be limited to 400 bytes. To use the variables, an instance of this UDT must be built.

 The FB_RSTI_EP_5261 block retrieves the process input data (such as InputOfModule, %AI0001) and stores it on the data buffer (RxDataBuffer) of a UDT. The size and the location of the data buffer are user-determined. Additionally, the user can define the number of bytes within a telegram (uiMaxRecvData). The same process applies to data transmission.

Figure 8: Functional Block FB_RSTi_EP-5261

	FB RSTI	EP-5261	
-	xEnableRecv	xBusyRecv	-
_	xEnableSend	xRecvDone	_
-	xQuit	uiRecvDataCnt	\vdash
_	xClr_Buf_Rx	xBusySend	-
_	xClr_Buf_Tx	xSendDone	-
-	xDisableTxHWBuf	[:] uiSendDataCnt	-
-	uiMaxRECVData	xRxHWButNotEmpty	-
-	uiMaxSendData	xErrorFlag	-
_	InputsOfModule	wRetVal	\vdash
_	OutputsOfModule		
_	RxDataBuffer		
_	TxDataBuffer		

Note: For the V1.01 release: Ser_Data was renamed to EP5261_Data.

FB_RSTi_EP-5261 Input Variables

Variable	Туре	Description	
xEnableRecv	BOOL	Enables receive data: 0 = Receive disabled, 1 = Receive enabled	
xEnableSend	BOOL	Enables send data: 0 = Send disabled, 1 = Send enabled	
xQuit	BOOL	Acknowledgment of errors	
xClr_Buf_Rx	BOOL	Flushes receive buffer : 0 to 1 and Quit = 1	
xClr_Buf_Tx	BOOL	Flushes the send buffer : 0 to 1 and Quit = 1	
xDisableTxHWBuffer	BOOL	Disables the hardware (HW) transmit buffer: 0 = released , 1 = disabled	
		The maximum number of the data byte to be received within one	
		telegram. Can be changed before a new job according to the expected	
ulMaxRecvData	UINI	telegram length.	
		Note: Must be > 0. If not, data will not be received.	
	UINT	The maximum number of the data byte to be transmitted within one	
		telegram. Can be changed before a new job according to the expected	
uiMaxSendData		telegram length.	
		Note: Must be > 0. If not, data will not be transmitted.	
InputOfModule	ARRAY [07] OF	Process input data of the module. The data type is INT.	
'	INT		
OutputOfModule	ARRAY [07] OF INT	Process input data of the module. The data type is INT.	
DyDataBuffer		Address of the buffer that receives data within the PLC. The array of n	
KXDalabuilei	ARRAY OF BYTE	elements of data type BYTE. Currently fixed to 400 bytes.	
TyDataBuffer		Address of the buffer that transmits data within the PLC. The array of n	
	ARKAT UF DITE	elements of data type BYTE. Currently fixed to 400 bytes.	

FB_RSTi_EP-5261 Output Variables

Variable	Туре	Description
xBusyRecv	BOOL	Displays an active data reception
xRecvDone	BOOL	Displays finished data reception. Remains TRUE until <i>xEnableRecv</i> is TRUE.
uiRecvDataCnt	UINT	Counter for the received data bytes
xBusySend	BOOL	Displays active data transmission
xSendDone	BOOL	Displays finished data transmission. Remains TRUE until <i>xEnableSend</i> is TRUE.
uiSendDataCnt	UINT	Counter for transmitted data bytes
xRxHWBufNotEmpty	BOOL	Indicates that the hardware receive buffer is not empty
xErrorFlag	BOOL	Displays a general error. Can be reset by acknowledging the variable <i>xQuit</i> .
wRetVal	WORD	Return Value: value is > 8000h to error

Possible Output	Dot\/ol	Description			
Variable	Relval	Description			
	16#0000	No error			
Warnings	16#0001	Receive buffer not empty			
warnings	16#0002	Handshake (CTS or XOFF) ON			
	16#0003	Receive buffer not empty and handshake (CTS or XOFF) ON			
	16#8000	Module not ready for communication. Check the address of the			
		variable InputOfMdule.			
	16#8008	Indicates a parameter fault. Check the parameter choice in the PLC			
		configuration.			
	16#8010	Indicates a hardware fault. Replace the hardware.			
	16#8020	Indicates fault data flow control. Check the parameter in the PLC			
		configuration.			
	16#8040	Indicates frame fault. Check the parameter choice in the PLC			
Errors		configuration.			
	16#8080	Indicates (receive)buffer overflow of EP-5261 module. Check the			
		communication.			
	16#80C0	Indicates (receive)buffer overflow and frame fault of EP-5261 module.			
	10#8000	Check the communication.			
	16#8101	Size of receive buffer is > maximum number of received bytes ==> FB			
		abort.			
	16#8201	Size of send buffer is > maximum number of bytes to be sent ==> FB			
		abort.			

MODBUS RTU MASTER FUNCTION BLOCK (FB_MBM_RTU_MASTER), Version-1.00 and later releases

The Modbus RTU master function block FB_MBM_RTU_Master is a MODBUS RTU Master block used in combination with the Serial Communication Interface module RTSi EP-5261 and the function block FB_RSTI_EP_5261. Using this block, a maximum of 120 registers / 1024 coils per job per message can be exchanged. The function block can handle up to 247 MODBUS RTU slaves. Refer MODBUS RTU Master schematics diagram below for more details.

The function block FB_MBM_RTU_Master Version 1.01 is using/calling the function block FB_RSTI_EP_5261 for handling the serial module EP5261. All needed data and variables will be automatically used internally. Additionally, the Auxiliary function "ModbusMaster_CoilMax" is also called from the function block which is included in the library.

To enable MODBUS data access, a User Defined Types MBM_Data must be imported.

A USER DEFINED TYPES database has to be created for the MODBUS data access or could get from the library.

Figure 9: Modbus RTU Master Functional Block

MODBUS RTU MASTER FUNCTIONAL BLOCK

Figure 10: Modbus RTU Master Schematics

Figure 11: ModBUS RTU Properties

To use the variables, an instance of this UDT must be built.

Every data transfer on the bus is initiated and controlled by the master. A high level on the input variable *xMODfcStrobe* starts the job, and its function is determined by the function code entered at the input variable *usiMODfc*. Communication with the MODBUS station, for which an address has been parameterized on the input variable *usiMODslaveAdr*, is accepted. Depending on the function code, the MODBUS input parameters are interpreted as listed in the following table.

Function Code	uiMODdatOff	uiMODdatNr	warMODRegister	xarMODCoil
FC 1	Coil source offset in slave	Number of requested coils		Coil target buffer in master
FC 2	Input source offset in slave	Number of requested inputs		Input target buffer in master
FC 3	Holding register source offset in slave	Number of requested registers	Holding register target buffer in master	
FC 4	Input register source offset in slave	Number of requested registers	Input register target buffer in master	
FC 5	Coil target offset in slave			Coil value in index [1]
FC 6	Holding register target offset in slave		Register value in index [1]	
FC 8			Test value in index [1]	
FC 15	Coil target offset in slave	Number of coils to be sent		Coil source buffer in master
FC 16	Holding register target offset in slave	Number of registers to be sent	Holding register source buffer in master	

MODBUS Input Parameters

Buffers warMODRegister and xarMODCoil are always Read or Written by the master from the first index (MODBUS to 1). The MODBUS diagnostic outputs usi_MODslaveAdrDone, usiMODfcDone, uiMODdatOffDone, and uiMODdatNrDone, always mirror the communication state during a malfunction, meaning they acknowledge the respective inputs or provide information concerning the content of the slave response. With function codes 5, 6 and 8, uiMODdatNrDone describes the written value. The output xMODtransActive is TRUE during execution until the slave response is received. After the job has been completed, the output returns to FALSE, and xMODtransOk is set to a value of 1 if no telegram fault, protocol fault, data fault, or other communication fault has occurred. During a fault, xMODtransOk remains at FALSE and the fault is described with the usiMODfailCode exception code. If the slave does not answer within the set tMODtimeOut timeout threshold, an error message is generated. The outputs are refreshed each time a new job is started.

Supported Function Codes

Function Code	Description	Output
1	Read multiple coil status	Reading of bit variables (Coils)
2	Read multiple input status	Reading of bit variables (Inputs)
3	Read multiple holding registers	Reading of word variables (Register)
4	Read multiple input registers	Reading of word variables (Inputs)
5	Force single coil	Writing of a bit variable
6	Force single register	Writing of a word variable
8	Loopback diagnostic test (00: return query data)	Connection test
15	Force multiple coils	Writing multiple bit variables (Coils)
16	Force multiple registers	Writing multiple word variables (Register)

FB_MBM_RTU_Master Input Variables

Variable	Туре	Description		
vEnable	BOOL	Enable COM port for MODBUS communication and reset/initiate the module		
ALIIADIE	BOOL	EP-5261 while toggling the flag.		
usiMODSlaveAdr	UINT	Address of MODBUS Slave. Default = 0.		
usiMODfc		Function codes		
usimobic	OINT	1, 2, 3, 4, 5, 6, 8, 15, 16 are supported, depending on the MODBUS slave		
uiMODdatOff	UINT	Offset address (begin) of MODBUS register that will be accessed		
uiMODdatNr	UINT Number of MODBUS register of the access			
tMODtimeOut	UINT	Timeout for MODBUS slave answer. Default = 10s, value in second.		
xMODfcStrobe	BOOL	Start of a MODBUS request 0 to 1		
warMODRegister	Array 0120 of	MODBUS data: Buffer for receive or send register, e.g.		
	WORD	MBM_Data01.arwMB_Register		
xarMODCoil	Array 0512 of	MODBUS data: Buffer for receive or send BOOL(coil) variables, e.g.		
	BOOL	MBM_Data01.arxMB_Coil		
InputAdrEP5261	Array 07 of	Hardware address of the inputs of EP5261		
	INT			
OutputAdrEP5261	Array 07 of	Hardware address of the outputs of EP5261		
	INT			

FB_MBM_RTU_Master Output Variables

Variable	Туре	Description	
xMBMasterFirstCycle	BOOL	Flag first cycle: set to a value of 1 after the first cycle	
xComPortActiv	BOOL	Status of COMport, MODBUS is activated	
xMODtransActive	BOOL	MODBUS transmission is active	
xMODtransOk	BOOL	MODBUS request is answered OK	
usiMODslaveAdrDone	UINT	Last addressed MODBUS slave	
usiMODfcDone	UINT	Last Function Code	
uiMODdatOffDone	UINT	Last offset addr. of MODBUS register	
uiMODdatNrDone	UINT	Last number of MODBUS register	
usiMODfailCode	UINT	MODBUS fail code	
Possible Output	usiMODfailCada	Description	
Variable	usiwiODfallCode	Description	
	0	No error	
	1	MODBUS: Illegal Function Code	
	2	MODBUS: Error Data address	
	3	MODBUS: Error Data value	
	4	MODBUS: Error telegram length	
Error codo	10	Parameter error of the function block	
	11	COMport open/initializing failed	
	12	MODBUS: CRC Error	
	13	MODBUS: Time out	
	14	MODBUS: Error slave address	
	15	MODBUS: Slave indicates incorrect Function Code	
	16	MODBUS: Slave indicates incorrect number or address of the register	

- **Note**: The bus should be divided into individual segments with repeaters. The repeater ensures that the bus potentials are adjusted to the correct level. The module specification refers to "unit load" per device; 32 devices will work without a repeater. Certain serial devices operate with a smaller load on the bus. For example, ¼ load devices will allow four times as many devices on the bus with no repeater. A maximum of 247 devices can be addressed by the EP-5261, but care must be taken to install a signal repeater according to the selection of serial devices in the system.
- **Note:** FB_MBM_RTU_Master uses and calls the auxiliary function block ModbusMaster_CoilMx (included in the library).

Release History

SERIAL COMMUNICATION MODULES

Catalog Number	Firmware Version	Date	Comments
EP-5261-BD	01.00.16	July 2023	Updates to PLC application function block
EP-5261-BD	01.00.16	June 2022	Updates to correct the details of the status and
			Front page Warning info edited to match Emerson
FP-5261-BD	01.00.16	Nov 2021	style guide.
			Figure titles are applied to all Figures.
			Notes formatted as per Emerson style guide.
			Following Emerson's acquisition of this product,
	01.00.16		changes have been made to apply appropriate
		Sep-2019	branding and registration of the product with
			required certification agencies. No changes to the
			material, process, form, fit, or functionality.
EP-5261-BD			Firmware updates
			To increase the size of RX buffer to 4kByte
			Module freeze issue is fixed when the force modus is
			used or when software reset was done to the
			Fieldbus.
EP-5261-AB	01.00.12	Mar 2019	Added Modbus RTU Slave information
EP-5261-AB	01.00.12	0.4.2017	Release for firmware enhancements and addressing
		0002017	issues in PLC Stop handling.
EP-5261	01.01	Jun 2015	Initial release

PLC APPLICATION FUNCTION BLOCKS

FUNCTION BLOCK	Version	Date	Comments
			The CPE2xx platform may reach a stop fault
			when the EP-5261 module serial communication
FB_MBM_RTU_Master	02.00	July 2023	line is miswired and/or invalid data length is
			provided to the function block. The latest
			revision of the function block resolves this issue.
		Oct 2021	Reset serial communications after losing
FD_WIDWLRTO_WIASter	01.02	000 2021	PROFINET or serial communications.
FB_RSTI_EP_5261		Oct 2017	Release for firmware enhancements and
FB_MBM_RTU_Master	01.01	0002017	provide simplified Block structure.
FB_RSTI_EP_5261	01.00	Aug 2016	Initial release
FB_MBM_RTU_Master	01.00	Aug 2010	1111101101000

Important Product Information

Updates

Module	Firmware Version	Upgrade Kit & Configuration File
EP5261	01.00.16	EP-5261-0008012-01_00_16-1.zip consists of
		a. EP-5261-0008012-01_00_16-1.bsm
		b. EP-5261.hex
		c. FW_upgrade_procedure
		d. IPI-GFK-2992D

Functional Compatibility

N/A

Problems Resolved

DEFECT NUMBER	Version	Date	Problems resolved
DE9685	02.00 - FB_MBM_RTU_Master	July 2023	The CPU Stop fault issue has been resolved by
			implementing fixes in the function block code
DE7888	01.02- FB_MBM_RTU_Master	Oct 2021	Resetof serial communications after losing
			PROFINET or serial communications.

New Features and Enhancements

None

Known Restrictions and Open Issues

None

Operational Notes

None

Product Documentation

RSTi-EP Slice I/O Module User Manual (GFK-2958)

RSTi-EP Slice I/O Functional Safety Module User Manual (GFK-2956)

RSTi-EP Slice I/O Speciality Modules IPI (GFK-2962)

General Contact Information

Home link:	http://www.emerson.com/industrial-automation-controls	
Knowledge Base:	https://www.emerson.com/industrial-automation-controls/support	

Technical Support

Americas Phone:	1-888-565-4155 1-434-214-8532 (If toll-free option is unavailable)
	Customer Care (Quotes/Orders/Returns): <u>customercare.mas@emerson.com</u> Technical Support: <u>support.mas@emerson.com</u>
Europe Phone:	+800-4444-8001 +420-225-379-328 (If toll-free option is unavailable) +39-0362-228-5555 (from Italy - if toll-free 800 option is unavailable or dialing from a mobile telephone)
	Customer Care (Quotes/Orders/Returns): <u>customercare.emea.mas@emerson.com</u> Technical Support: <u>support.mas.emea@emerson.com</u>
Asia Phone:	+86-400-842-8599 +65-6955-9413 (All other Countries)
	Customer Care (Quotes/Orders/Returns): <u>customercare.cn.mas@emerson.com</u> Technical Support: <u>support.mas.apac@emerson.com</u>

Any escalation request should be sent to: <u>mas.sfdcescalation@emerson.com</u>

Note: If the product is purchased through an Authorized Channel Partner, please contact the seller directly for any support.

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice. Emerson does not assume responsibility for the selection, use, or maintenance of any product. Responsibility for proper selection, use, and maintenance of any Emerson product remains solely with the purchaser.

© 2023 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

