PACSystems Industrial PROFINET Managed Ethernet Switches MRP

APPLICATION GUIDE

GFK-3070A

Jan 2020

Warnings and Caution Notes as Used in this Publication

A WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

A CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to understanding and operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that Emerson may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for particular purpose.

Warnings and Cautions ii

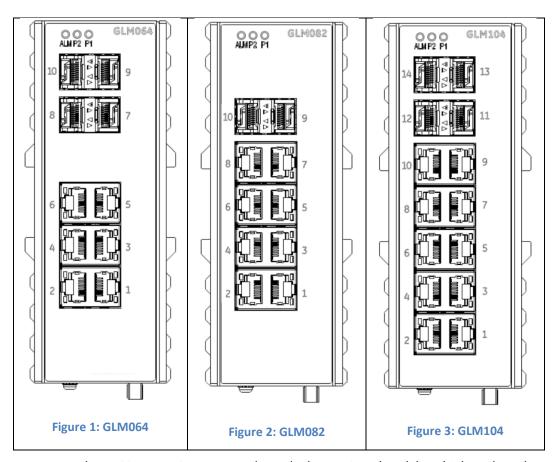

Contents

Table of Cor	tentsiii
Section 1	Introduction1
1.1	Revisions in this Manual
1.2	PACSystems Documentation
Section 2	Summary Overview5
2.1	Overview
Section 3	Single PROFINET-MRP Ring6
3.1	Network Topology6
3.2	Hardware Configuration6
3.2	1 Project Open6
3.2	2 I/O Controller Setting 8
3.2	3 I/O Device Setting
3.2	4 DCP Set Command
3.2	5 I/O Device Scan
3.2	6 MRP Setting
3.2	7 Network Setting
3.2	8 PC Network
3.2	9 Temporary IP
3.3	Implementation
Section 4	Multiple PROFINET-MRP Ring43
4.1	Network Topology43
4.2	Hardware Configuration43
4.2	1 Project Open44
4.2	2 I/O Controller Setting45
4.2	3 I/O Device Setting52
4.2	4 DCP Set Command
4.2	5 I/O Device Scan
4.2	6 MRP Setting63
4.2	7 Network Setting
4.2	8 PC Network 67
4.2	9 Temporary IP68

PACSystems Industrial PROFINET Managed Ethernet Switches MRP Application Guide Contents GFK-3070A Jan 2020			
4.3	Implementation	69	
Section 5	PROFINET-MRP Main Ring Couples Multiple PROFINET-MRP Subrings	72	
5.1	Network Topology	72	
5.2	Hardware Configuration	72	
5.2	2.1 Project Open	73	
5.2	2.2 I/O Controller Setting	74	
5.2	2.3 I/O Device Setting	81	
5.2	2.4 DCP Set Command	86	
5.2	2.5 I/O Device Scan	90	
5.2	2.6 MRP Setting	94	
5.2	2.7 Network Setting	98	
5.2	2.8 PC Network	100	
5.2	2.9 Temporary IP	101	
5.3	Implementation	102	
Section 6	Multiple PROFINET MRP Ring and Subring	105	
6.1	Network Topology	105	
6.2	Hardware Configuration	105	
6.2	Project Open	105	
6.2	2.2 I/O Controller Setting	107	
6.2	2.3 I/O Device Setting	117	
6.2	2.4 DCP Set Command	123	
6.2	2.5 I/O Device Scan	126	
6.2	2.6 MRP Setting	130	
6.2	2.7 Network Setting	135	
6.2	P.8 PC Network	137	
6.2	2.9 Temporary IP	138	
6.3	Implementation	139	
Section 7	PROFINET-MRP Main Ring Coupled withTwo PROFINET-MRP Subrings	142	
7.1	Network Topology	142	
7.2	Hardware Configuration	143	
7.2	2.1 Project Open	143	
7.2	2.2 I/O Controller Setting	144	
7.2	2.3 I/O Device Setting	152	
7.2	2.4 DCP Set Command	158	

PACSyster GFK-3070A	ns Indi	ustrial PROFINET Managed Ethernet Switches MRP Application Guide	Contents Jan 2020
7.2	2.5	I/O Device Scan	161
7.2	2.6	MRP Setting	166
7.2	2.7	Network Setting	174
7.2	2.8	PC Network	176
7.2	2.9	Temporary IP	177
7.3	Impl	ementation	178
Section 8	PRO	FINET System Redundancy	181
8.1	Netv	vork Topology	181
8.2	Hard	ware Configuration	181
8.2	2.1	Project Open	182
8.2	2.2	I/O Controller Setting	182
8.2	2.3	I/O Device Setting	190
8.2	2.4	DCP Set Command	194
8.2	2.5	I/O Device Scan	195
8.2	2.6	MRP Setting	198
8.2	2.7	Network Setting	223
8.2	2.8	PC Network	225
8.2	2.9	Temporary IP	226
8.3	Impl	ementation	227
Genera	al Cont	act Information	230
Techni	ical Sup	pport	230

Section 1 Introduction

The PACSystems GLM series Industrial Ethernet Switches deliver high quality Ethernet operation over a wide temperature range and can tolerate an extended power input range. These switches are ideal for harsh environments and mission critical applications. They may be DIN-rail mounted or panel-mounted.

Applications include:

- Virtual LANs (VLANs)
- Access Control List Security (ACL)
- Failover Ring Protection
- Quality of Service (QoS) features
- Internet Group Management Protocol (IGMP)

This document includes a product overview and covers installation, configuration, operation and diagnostics.

Introduction 1

1.1 Revisions in this Manual

Rev	Date	Description
A	Jan- 2020	Following Emerson's acquisition of this product, changes have been made to apply appropriate branding and registration of the product with required certification agencies. No changes to material, process, form, fit or functionality.
-	Aug- 2019	Initial release.

1.2 PACSystems Documentation

PACSystems Manuals

PACSystems RX3i and RSTi-EP CPU Reference Manual	GFK-2222
PACSystems RX3i and RSTi-EP CPU Programmer's Reference Manual	GFK-2950
PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual	GFK-2224
PACSystems TCP/IP Ethernet Communications Station Manager User Manual	GFK-2225
PACSystems Memory Xchange Modules User's Manual	GFK-2300
PACSystems Hot Standby CPU Redundancy User Manual	GFK-2308
PAC Machine Edition Logic Developer Getting Started	GFK-1918
PAC Process Systems Getting Started Guide	GFK-2487
PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure Deployment Guide	GFK-2830
PACSystems RX3i Systems Manual	GFK-2314
PACSystems RX3i Ethernet Network Interface Unit User's Manual	GFK-2439
PACSystems RX3i PROFINET Scanner Manual	GFK-2737
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual	GFK-2571
PACSystems Industrial PROFINET Managed Ethernet Switches Important Product Information (IPI)	GFK-3028
PACSystems Industrial PROFINET Managed Ethernet Switches User's Manual	GFK-3030
PACSystems Industrial PROFINET Managed Ethernet Switches CLI Command Reference	GFK-3061
Guide PACSystems Industrial PROFINET Managed Ethernet Switches Web Configuration Tool	
Guide	GFK-3062
PACSystems Industrial PROFINET Managed Ethernet Switches Secure Deployment Guide (SDG)	GFK-3063
PAC Systems Industrial PROFINET Managed Ethernet Switches Installation 8. Maintenance	GFK-3098

Introduction 2

In addition to these manuals, datasheets and product update documents describe individual modules and product revisions. The most recent PACSystems documentation is available on the Emerson support website. Please see the links provided at the end of this document.

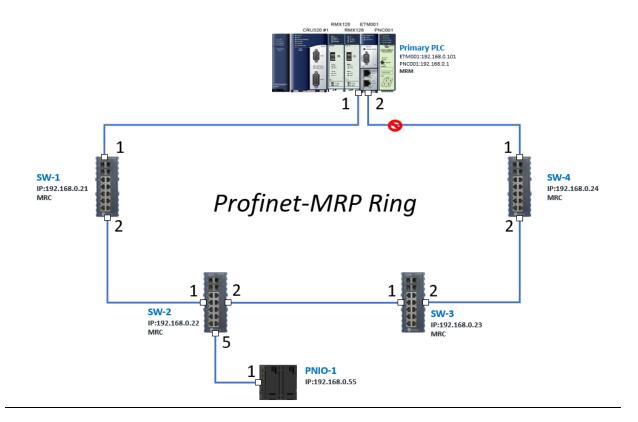
Introduction 3

Section 2 Summary Overview

2.1 Overview

This Application Guide provides for following application scenarios.

- 1. Single PROFINET_MRP Ring: In this application scenario, GLM switch act the role of MRC to cooperate with manager device, for providing the ring protection.
- 2. Multiple PROFINET-MRP Ring: In this application scenario, GLM switch act as role of MRC, to expend the ring protected network without the need of controller and allow IO-Controller to focus the process control.
- 3. PROFINET-MRP Main Ring couples multiple PROFINET-MRP Subrings: GLM switch is capable to support communicating two rings connected with each other. The various topologies derived from Dual MRP fit for most of the PROFINET applications.
- 4. Multiple PROFINET MRP Ring and Subring: Via the capability of supporting of MRM & MRC roles, the network design can be flexible and cost effective according to variant application environment
- 5. PROFINET-MRP Main Ring couples with coupled two PROFINET-MRP Subring: In the application scenario, GLM switch is capable of conducting the network protection without IO-C involved.
- 6. PROFINET System Redundancy: This section will show how to use RingV2 and MRPe to setup the network topology which can support system redundancy and media redundancy.


Network topology, configuration and implementation of these application scenario are described in following sections.

Summary Overview 5

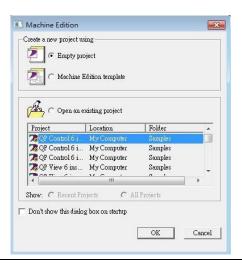
Section 3 Single PROFINET-MRP Ring

3.1 Network Topology

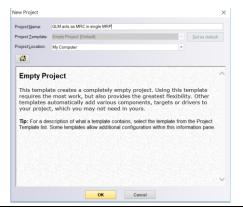
Figure 4: Profnet-MRP Ring

3.2 Hardware Configuration

On the CRU320, the I/O data can be set to "STOP", "RUN OUTPUT DISABLE" or "RUN I/O Enable" states by a switch imbedded on CRU320. During the configuration, the switches on both 2 CRU320s must be set to "STOP"


3.2.1 Project Open

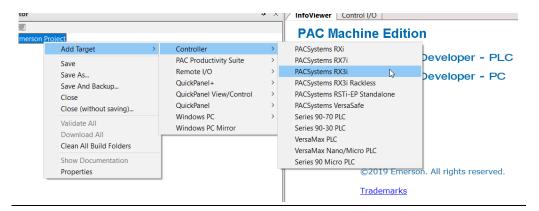
To start the software PAC Machine Edition, please follow the steps below:


- 1. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 2. Select the empty project and click **OK**.

3. Set the project name and click **OK.**

Figure 5: Create a new project

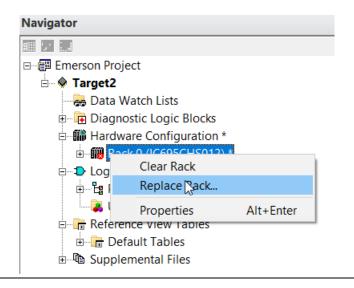
Figure 6: New Project Name



3.2.2 I/O Controller Setting

Next step is to add a target for this project. Click right button on project name "GLM act as MRC in single MRC group" and select **Add Target -> Controller -> PACSystems RX3i**.

The PACSystems RX3i is the I/O Controller to be tested.


Figure 7: Adding a Target

Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller. However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.

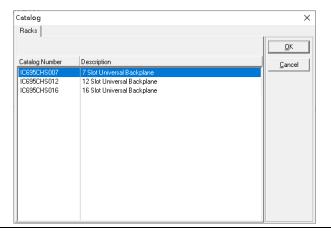

Click right button on "Rack 0 (IC695CHS012)" and select **Replace Rack**.

Figure 8: Replace Rack

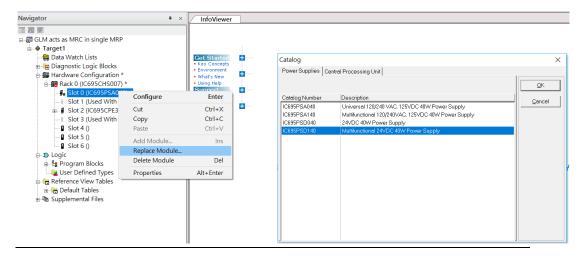
Select "IC695CHS007" and click OK.

Figure 9: Selecting the Catalog Number

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller.

Figure 10: Current Rack Configuration

From left to right, the installed devices on the I/O Controller are listed in the table below.


Devices on I/O Controller

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index.

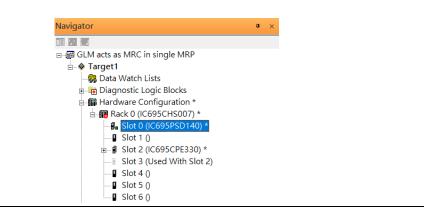

First, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PSD140, then click **OK**.

Figure 11: Replace Module

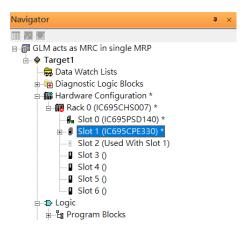

Slot 0 is replaced by current power card, PSD140.

Figure 12: Target Added

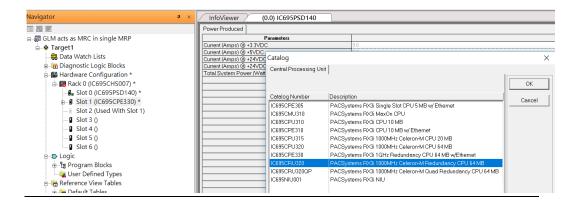

For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1. Now the slot 2 is cleaned.

Figure 13: Slot 1 and 2

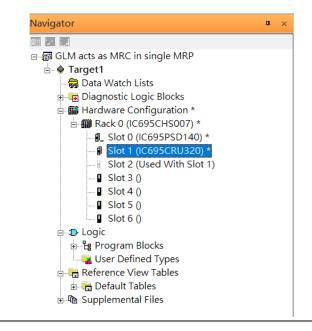
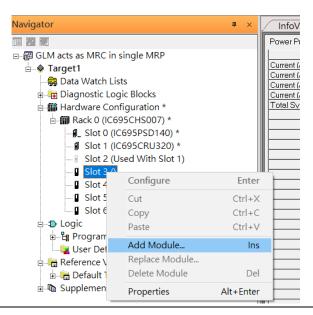

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace Module** to choose CRU320. Then choose **No**.

Figure 14: Catalog Number

Now the CRU320 is specified.


Figure 15: Select the specified target

3.2.2.1 Slot 3

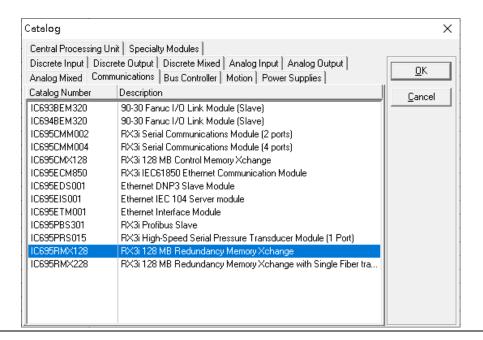

Next is to add RMX128 module for slot 3. Click the right button on slot 3, select **Add Module.**

Figure 16: Add Module

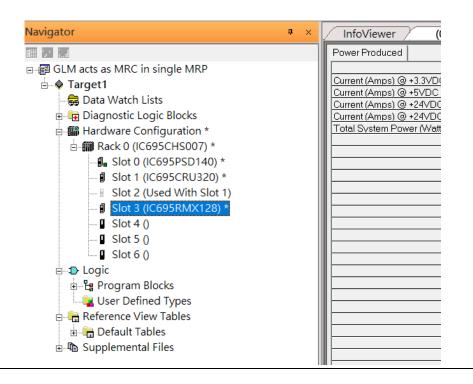
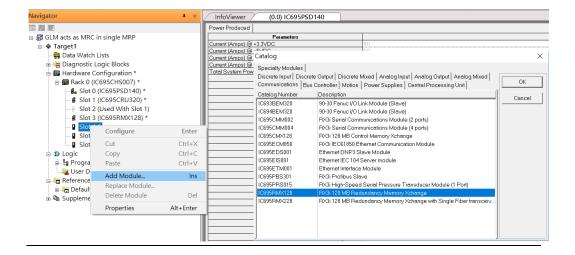

According to the current installation on the I/O Controller, the RMX128 shall be select. Select **Communications** -> IC695RMX128 and click **OK**.

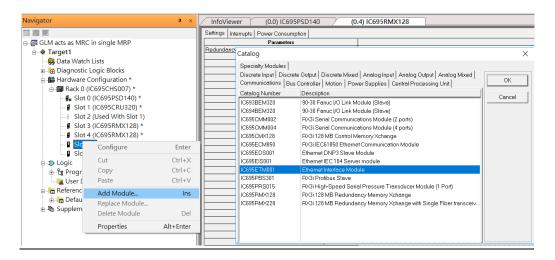
Figure 17: Select the module

Now the RMX128 is ready on slot 3.


Figure 18: Review the configuration in Slot 3

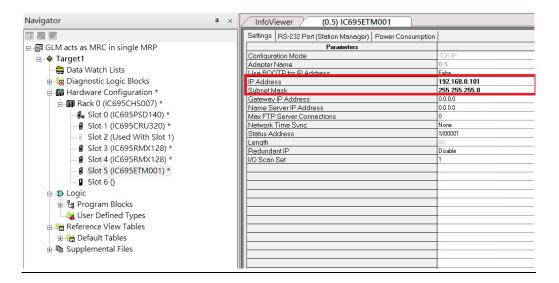
3.2.2.2 Slot 4

Next, select RMX128 for slot 4. Click the right button on slot 4, select **Add Module**, select **Communications-> IC695RMX128** and click **OK**.


Figure 19: Add Module

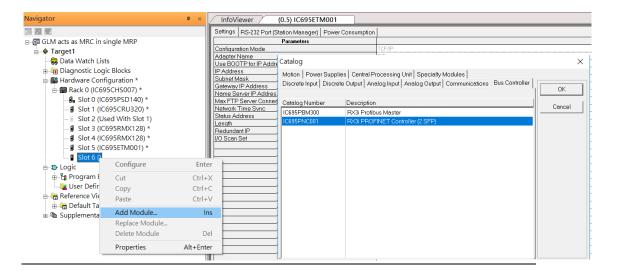
3.2.2.3 Slot 5

Next, select ETM001 for slot 5. Click the right button on slot 5, select **Add Module**, select **Communications** -> **IC695ETM001** and click **OK**.


Figure 20: Add Module

It should be note that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and Subnet Mask shall be specified.

In the following picture, the IP address 192.168.0.101 and mask 255.255.255.0 is specified on ETM001.


Figure 21: Specify the IP Address

3.2.2.4 Slot 6

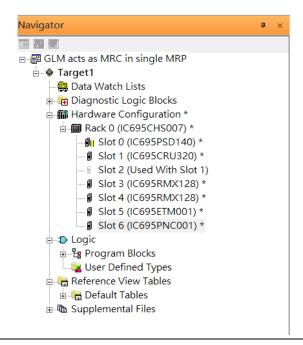
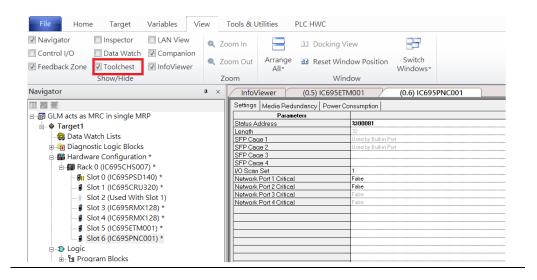

Next, select PNC001 for slot 6. Click slot 6 and click the right button, select \mathbf{Add} \mathbf{Module} , specify the installed Bus Controller, PNC001 and click \mathbf{OK}

Figure 22: Specify Bus Controller, PNC001

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 23: The rack is fully configured

3.2.3 I/O Device Setting

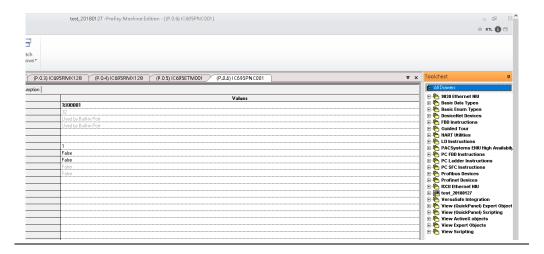

This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest**.

Figure 24: Toolchest location

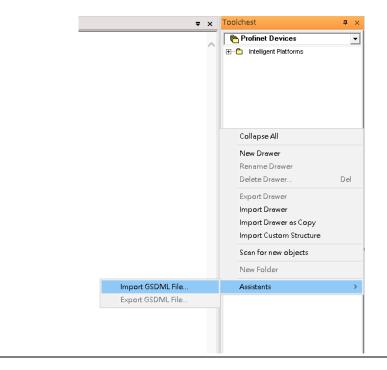

As shown in the following picture, a new interface is created on the right-hand side and select **Profinet Devices**.

Figure 25: Toolchest Interface

Click right button, select **Assistants-> Import GSDML File**. Select the GSDML File.

Figure 26: Import GSDML File

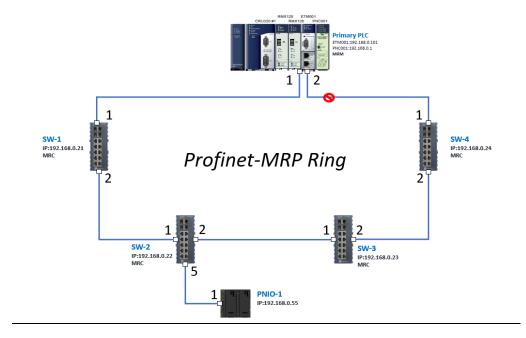

Then the corresponding I/O Device of GSDML File is added in the **Toolchest**.

Figure 27: Locate the GSDML file in the Toolchest

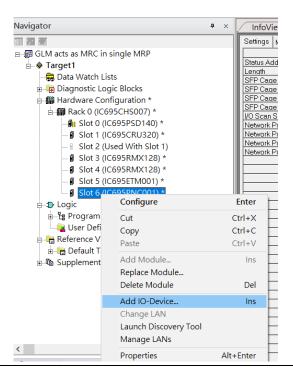
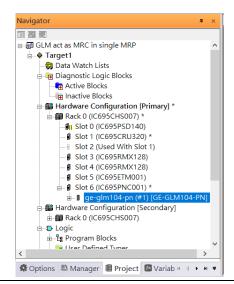

In this application setup, there are five I/O devices and one I/O controller. I/O devices are 4 switches and one Emerson VersaMax PROFINET I/O Scanner.

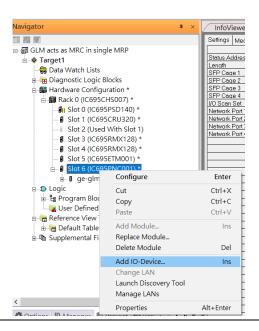
Figure 28: PROFINET-MRP Ring Application

The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001.


Figure 29: Add I/O Device

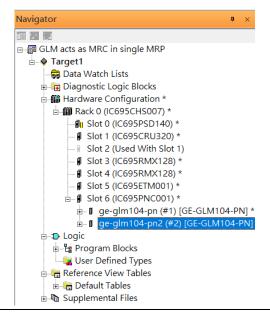
Select the specified I/O Service GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click OK.

Now the I/O device GLM104(SW1) is ready and is a sub slot on PNC001.


Figure 30

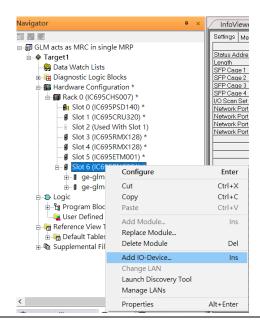
3.2.3.1 SW2

Then add the second I/O device in the PNC001.


Figure 31

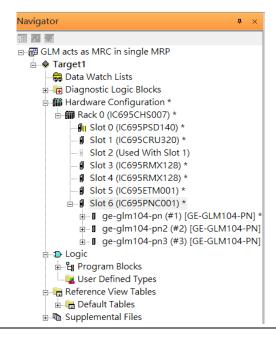
Select the specified I/O Service **GLM0104 20181123-V2_3-GE** -> **GE-GLM104-PN** and click **OK**.

Now the I/O device GLM104(SW2) is ready and is a sub slot on PNC001.


Figure 32: Sub-slot Configuration

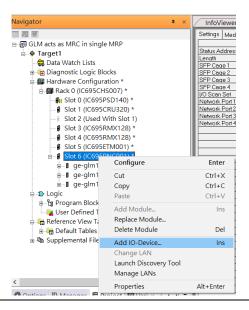
3.2.3.2 SW3

Then add the third I/O device in the PNC001.


Figure 33: Adding third I/O Device

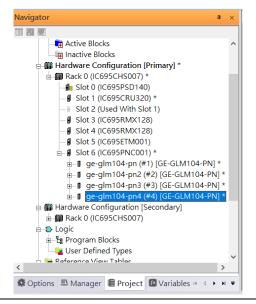
Select the specified I/O Service **GLM0104 20181123-V2_3-GE** -> **GE-GLM104-PN** and click **OK.**

Now the I/O device GLM104(SW3) is ready and is a sub slot on PNC001.


Figure 34: GLM104 (SW4)

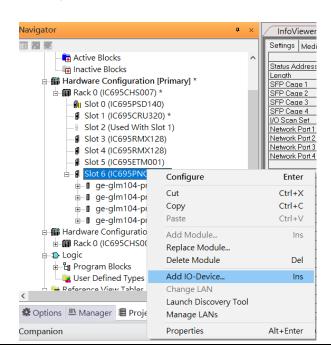
3.2.3.3 SW4

Then add the fourth I/O device in the PNC001.


Figure 35: Add the fourth I/O device

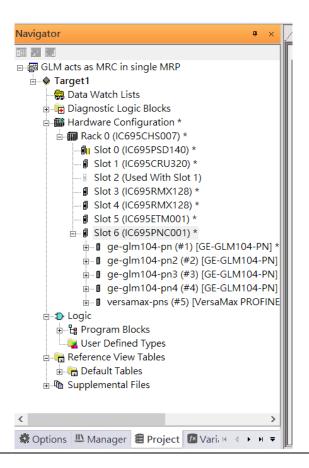
Select the specified I/O Service-> GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click OK.

Now the I/O device GLM104(SW4) is ready and is a sub slot on PNC001.


Figure 36: GLM104 (SW4)

3.2.3.4 **SW5**

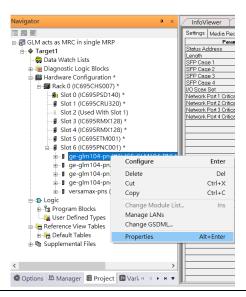
Then add the fifth I/O device in the PNC001.


Figure 37: Add the Fifth I/O Device

Select the specified I/O Service-> VersaMaxPNS 20130426-V2_3-GEIP -> VersaMax PROFINET IO Scanner (2 RJ-45 Copper connectors) and click OK.

Now the I/O device VersaMax PROFINET IO Scanner is ready and is a sub slot on PNC001.

Figure 38: PNC001



3.2.4 DCP Set Command

To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).

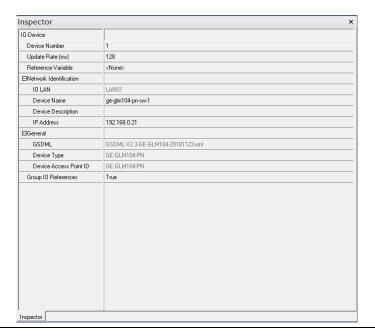

Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn, and click the right button. Select **Properties**, see the following figure:

Figure 39: Open Properties

In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm104-pn-sw-1" and IP address to "192.168.0.21" then we use I/O Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm104-pn-sw-1" later.

Figure 40: Setting IP Address

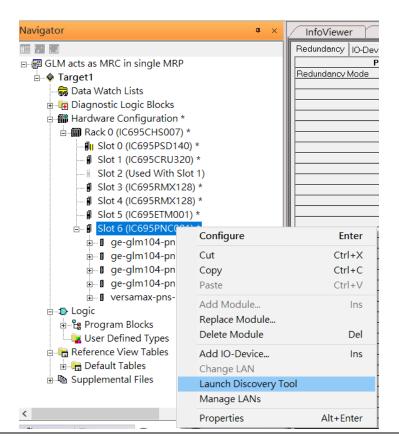
3.2.4.1 GLM104-PN2 through VERSAMAX-PNS-PNIO-1

Repeat this process and for the remaining I/O Devices. Use the table below to define the device name and IP address for each I/O device:

I/O Device	IP Address	Device Name
GLM10-PN	192.168.0.21	ge-glm104-pn-sw-1
GLM10-PN2	192.168.0.22	ge-glm104-pn-sw-2
GLM10-PN3	192.168.0.23	ge-glm104-pn-sw-3
GLM10-PN4	192.168.0.24	ge-glm104-pn-sw-4
VERSAMAX-PNIO	192.168.0.55	versamax-pns-pnio-1

Now all the devices have been changed their device name and IP address like the following picture.

Figure 41: All Device Names and IP Addresses Have Been Set



3.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool**.

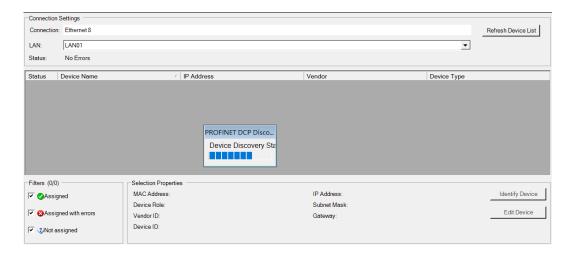

Note: Before we finish downloading the configuration to CRU320, need to unplug the block port according to the hardware topology to avoid loop.

Figure 42: Launch Discovery Tool

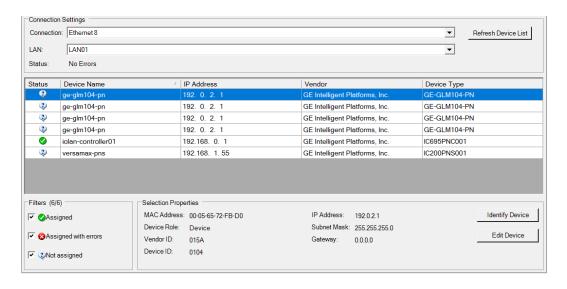

The tool is shown in the following picture, then press **Refresh Device List**.

Figure 43: Device Discovery State

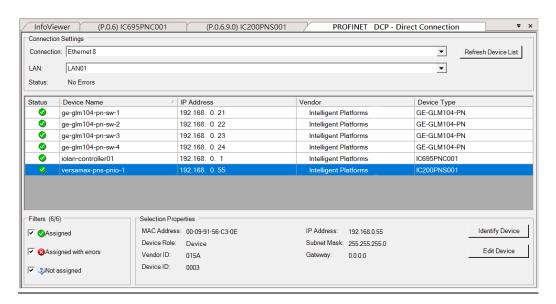
Then the connected I/O Device is listed in the following table.

Figure 44: Identify I/O Device

There are I/O Devices and their status are in "Not assigned". We need to change their device name to and IP address. Use **Identify Device** to make sure which device we set according to the hardware topology. Then start to set SW-1 device name and IP address.

Click **Edit Device**, set Device Name to "ge-glm104-pn-sw-1" and click **Set Device Name** button, then set IP Address to "192.168.0.21", Subnet Mask to "255.255.255.0" and click **Set IP Information** button.

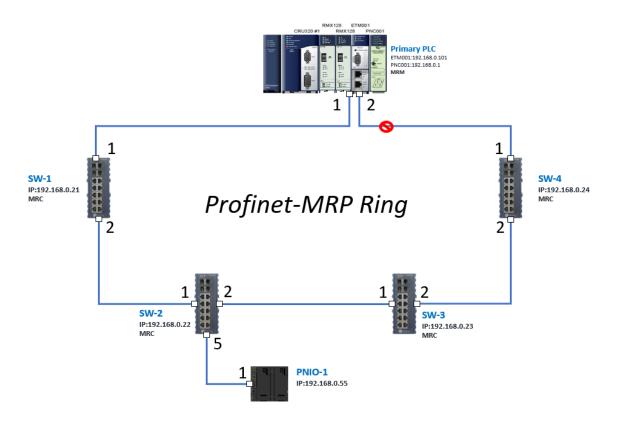
Figure 45: Edit Device Properties



Follow the above steps for each of the I/O devices. Use the table below to set the values for each device.

Device Name	IP Address	Subnet Mask
ge-glm104-pn-sw-1	192.168.0.21	255.255.255.0
ge-glm104-pn-sw-2	192.168.0.22	255.255.255.0
ge-glm104-pn-sw-3	192.168.0.23	255.255.255.0
ge-glm104-pn-sw-4	192.168.0.24	255.255.255.0
versamax-pns-pnio-1	192.168.0.55	255.255.255.0

After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.


Figure 46: Status is set to Assigned

3.2.6 MRP Setting

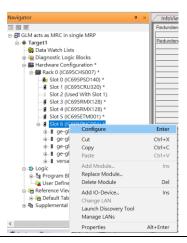

Setting MRP for I/O controller and I/O devices according to the following figure.

Figure 47: Profinet-MRP Ring Configuration

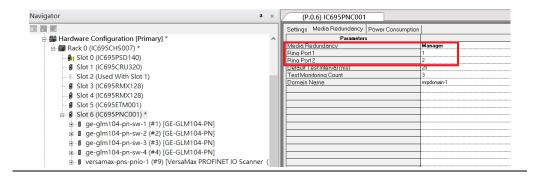

In order to enable MRP function in I/O controller, click the right button and choose **Configure**.

Figure 48: Configuring I/O Controller

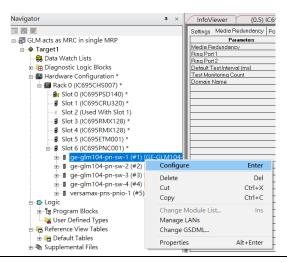

Enable MRP function by changing the value of **Media Redundancy** to Manager and select **Ring Port 1** to **1**, **Ring Port 2** to **2**.

Figure 49: Configuring Ring Port 1 and 2

In order to enable MRP function in SW1, click the right button and choose **Configure**. It will show **Media Redundancy** on the right window.

Figure 50: Configuring Properties for SW1

Enable MRP function by changing the value of "Media Redundancy" to client and select **Ring Port 1** to **1**, **Ring Port 2** to **2**.

Navigator (P.0.6.1.0) GE-GLM104-PN Redundancy | 10-Device Access Point | Media Redundancy | Device status | MRP G Hardware Configuration [Primary] * - Slot 0 (IC695PSD140) Domain Name Slot 2 (Used With Slot 1) ■ Slot 3 (IC695RMX128) Slot 4 (IC695RMX128) - ■ Slot 5 (IC695ETM001) - Slot 6 (IC695PNC001) * ge-glm104-pn-sw-1 (#1) [GE-GLM104-PN] * ■ Slot 0 (GE-GLM104-PN) * Slot 1 (Device data) Slot 2 (Port data) ■ Slot 3 (Port Settings) Slot 4 (MRP Group 1) ■ Slot 5 (MRP Group 2) Slot 6 (Ring Group 1)

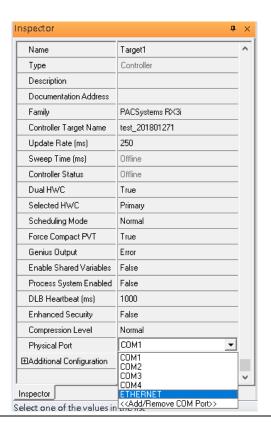
Figure 51: Setting Ring Port 1 and Ring Port 2 on SW1

Repeat these steps for SW2-SW4.

Slot 7 (MRPe Group 1)
Slot 8 (MRPe Group 2)

3.2.7 Network Setting

To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

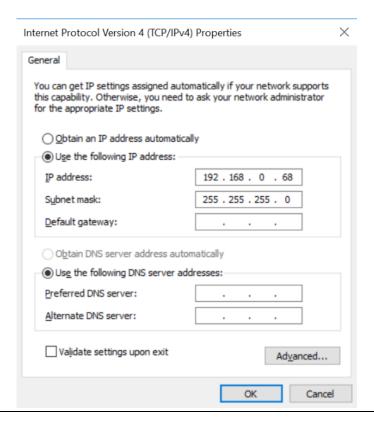

It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.

I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified.
	Click primary or secondary hardware configuration, click the right button, and select Set as Selected HWC
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

For rule 3, click Target 1 and select Property and select Physical Port to Ethernet.

Figure 52: Physical Port Configuration


Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.

3.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 53: Configuring IP Address of PC with PME

 $\mathtt{p} \times$

3.2.9 Temporary IP

If the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

Settings RS-232 Port (Station Manager) Power Consumption ₩ Data Monitor Values EGD Management Tool

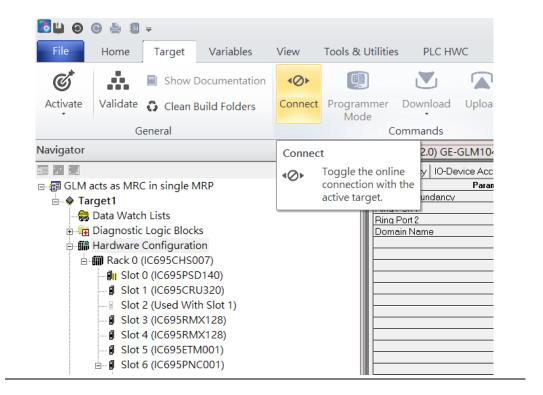

PAC8000 I/O Configuration Tool **Parameters** Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address × Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask ▼ VersaMotion Servo Configuration Tool Gateway IP Address VersaConf Safety Tool Name Server IP Address Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using Status Address hexadecimal notation (six 2-digit pairs). Length Redundant IP I/O Scan Set IP Address to Set Set IP Enter IP address using dotted decimal notation. Exit . 0 . 0 . 0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Clear Cache Cache button to clear this cache. If your computer has multiple network interfaces, you may pick the one to use. Enable interface selection

Figure 54: Set Temporary IP Address

3.3 Implementation

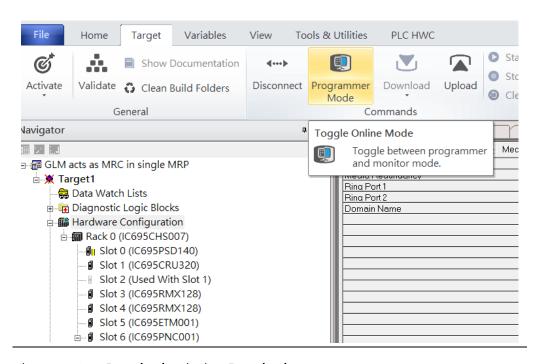

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 55: Connecting to Target

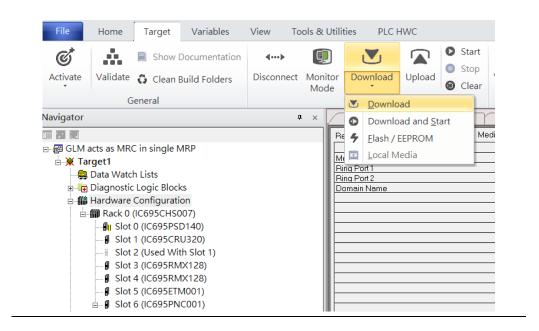

Then press the icon **Programmer Mode.**

Figure 56: Programmer Mode

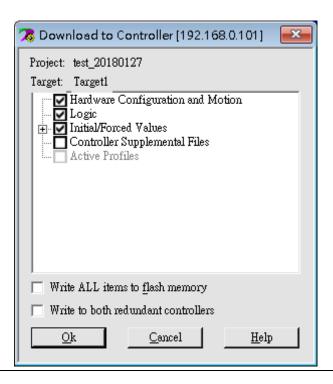

Then press icon **Download** and select **Download**.

Figure 57: Download

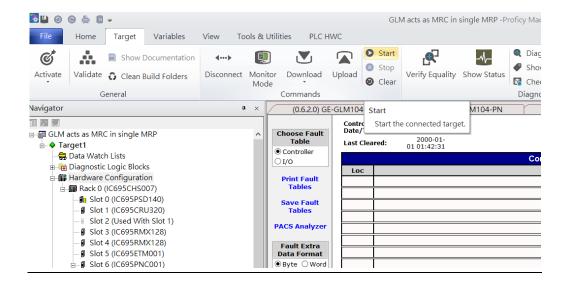

Then the dialogue is appeared to make sure the initialization procedure, select **OK**.

Figure 58: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".

Figure 59: Start

Section 4 Multiple PROFINET-MRP Ring

4.1 Network Topology

Figure 60: Multiple PROFINET-MRP Ring

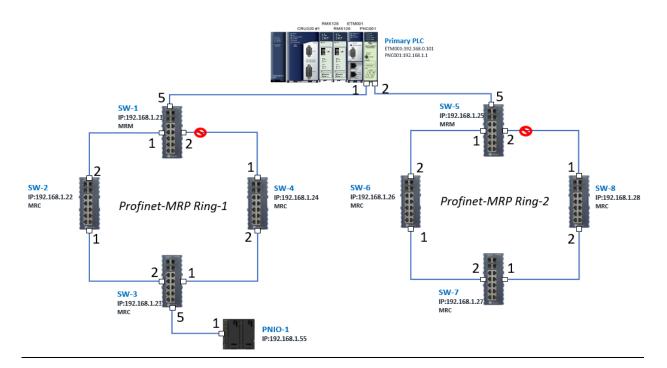


Figure 61

4.2 Hardware Configuration

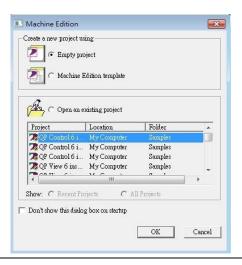
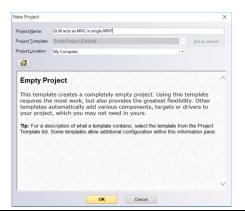
On the CRU320, the I/O data can be set to **STOP**, **RUN OUTPUT DISABLE** or **RUN I/O Enable** states by a switch imbedded on CRU320. During the configuration, the switches on both 2 CRU320s must be set to **STOP**.

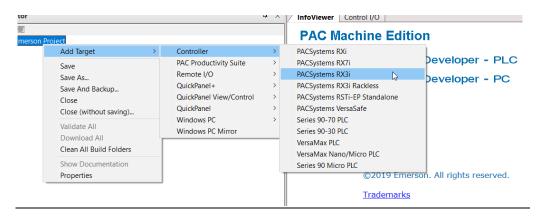
4.2.1 Project Open

To start the software PAC Machine Edition, please follow the steps below:

- 1. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 2. Select the empty project and click **OK**.
- 3. Set the project name and click **OK.**

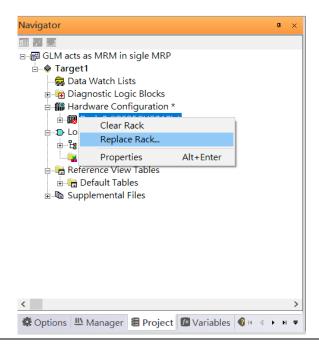
Figure 62: Create a new project


Figure 63: New Project Name

4.2.2 I/O Controller Setting

Next step is to add a target for this project. Click right button on project name "GLM act as MRC in single MRC group" and select **Add Target** -> **Controller**-> **PACSystems RX3i**. The PACSystems RX3i is the I/O Controller to be tested. See the following picture.


Figure 64: Adding a Target to Project

Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller. However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.

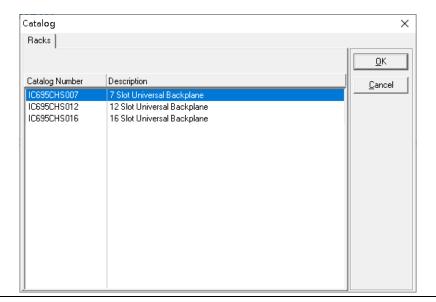

Click right button on "Rack 0 (IC695CHS012)" and select Replace Rack.

Figure 65: Replace Rack

Select "IC695CHS007" and click OK.

Figure 66: Select CHS007

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller

POWER

POWER

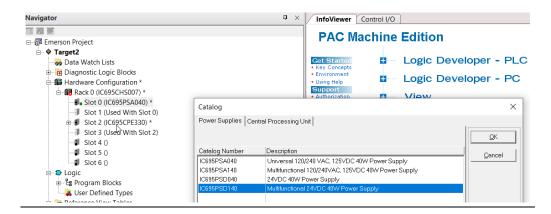
OF FAULT

OVERTEAP

OV

Figure 67: Rack Configuration for this Use Case

From left to right, the installed devices on the I/O Controller are


Devices on I/O Controller

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index.

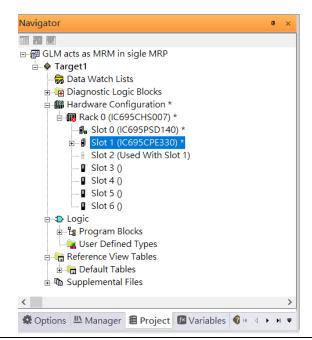

First, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PSD140, then click **OK**.

Figure 68: Specifying the power card for Slot 0

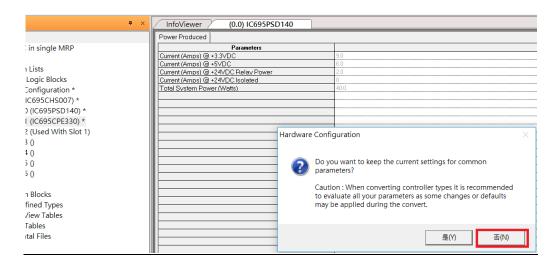
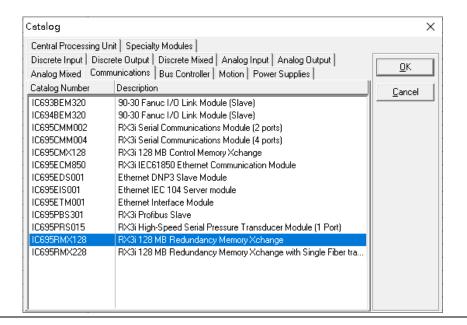

For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1. Slot 2 is now clear.

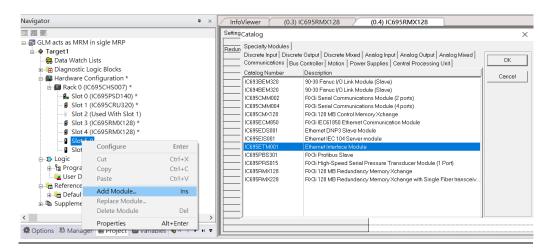
Figure 69: Integrating Slot 1 and 2

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace** Module ...] to choose CRU320. When asked if you want to keep the current settings for common parameters, choose **No.**


Figure 70: Dismissing Common Parameters

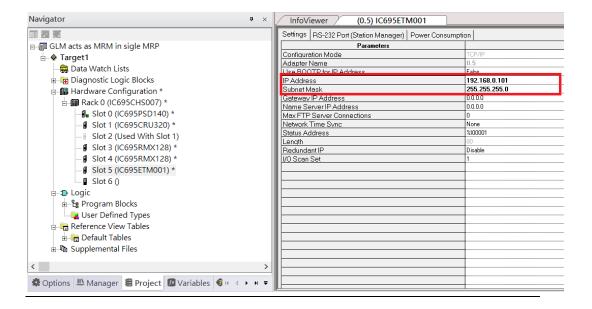
Next is to add RMX128 module for slot 3. Click the right button on slot 3, select **Add** Module.

According to the current installation on the I/O Controller, the RMX128 shall be select. Select **Communications** -> **IC695RMX128** and click **OK**.


Figure 71: Selecting RMX128

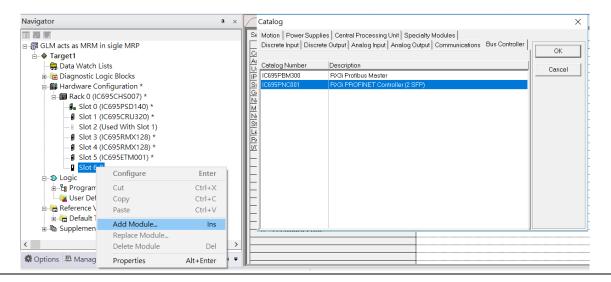
Once the RMX128 is ready on slots 3, select RMX128 for slot 4 by repeating the steps for slot 3.

Next, configure slot 5 with the ETM001.


Figure 72: Configuring Slot 5 with an ETM001 module.

It should be note that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and subnet mask shall be specified.

In the following picture, the IP address 192.168.0.101 and subnet mask 255.255.255.0 is specified on ETM001.


Figure 73: Configuring the IP Address and Subnet Mask on the ETMETM001

Next, select PNC001 for slot 6.

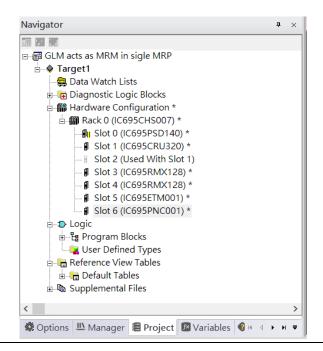
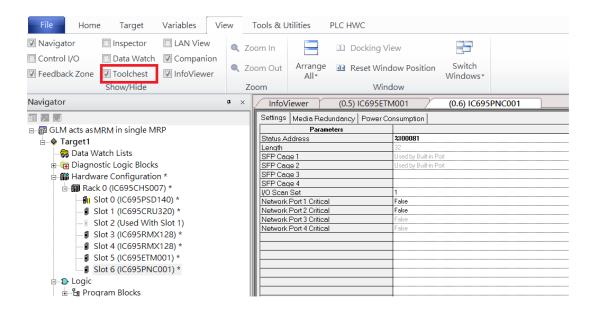

Click slot 6 and click the right button, select **Add Module**, specify the installed Bus Controller, PNC001 and click **OK.**

Figure 74: Configure Slot 6 for PNC001

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 75: Final Rack Configuration

4.2.3 I/O Device Setting

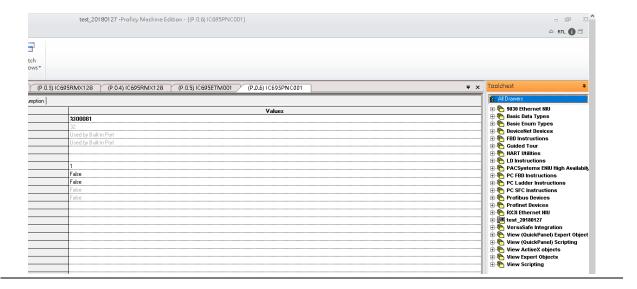

This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest**.

Figure 76: Toolchest feature

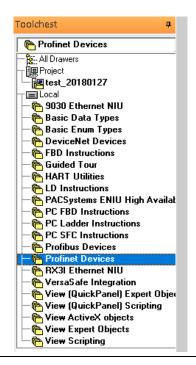

As shown in the following picture, the interface is created on the right-hand side.

Figure 77: Default Toolchest Interface Location

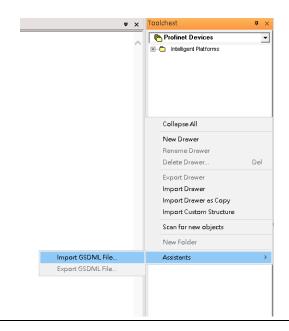

Select Profinet Devices from the Toolchest.

Figure 78: Profinet Devices


Click right button, select **Assistants** -> **Import GSDML File** ...

Figure 79: Importing the GSDML File

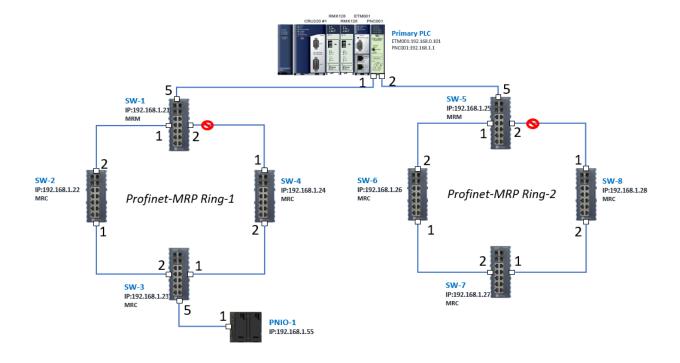

Select the GSDML File to open. The corresponding I/O Device of GSDML File is added in the Toolchest.

Figure 80: GSDML File Added to the Toolchest

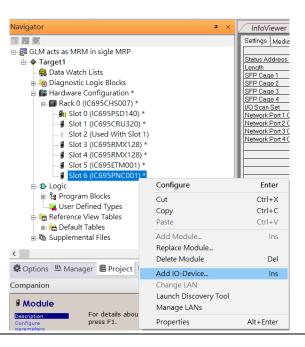
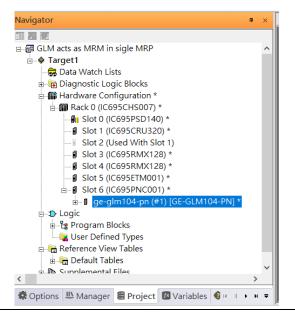

In this document, there are nine I/O devices and one I/O controller. I/O devices are eight switches and one Emerson VersaMax PROFINET I/O Scanner.

Figure 81: Multiple PROFINET-MRP Rings

The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001.


Figure 82: Add the I/O Device on PNC001

Select the specified I/O Service-> GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click OK.

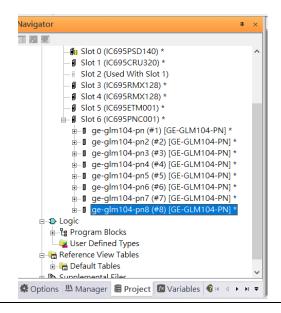
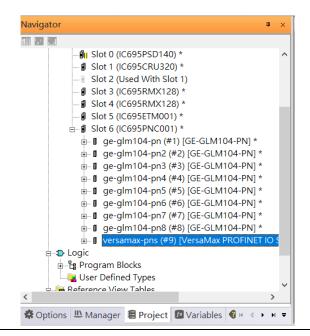

Now the I/O device GLM104(SW1) is ready and is a sub slot on PNC001.

Figure 83: SW1 is Configured with GLM104-PN

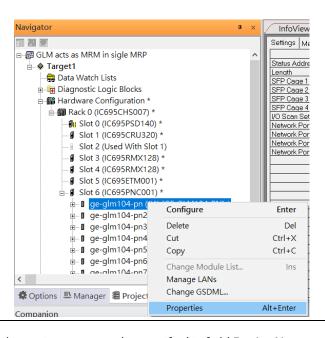
Repeat this process to add the second through the eighth I/O devices to the PNC001. The final results will look like the figure below:


Figure 84: Eight I/O Devices Added to the PNC001

Finally, add the ninth I/O device in the PNC001. This will be the VersaMax PROFINET IO Scanner.

Now the I/O device VersaMax PROFINET IO Scanner is ready and is a sub slot on PNC001.

Figure 85: All Nine I/O Devices Added to the PNC001


4.2.4 DCP Set Command

To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).

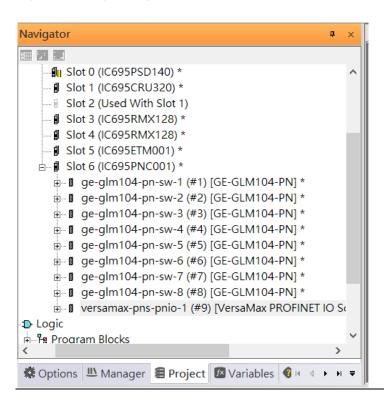
Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn, and click the right button.

Select **Properties**, see the following picture.

Figure 86: Opening the first I/O Device's Properties

In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm104-pn-sw-1" and IP address to "192.168.0.21" then we use I/O Device Discovery Tool to observe the I/O Device and set I/O Device's name to "ge-glm104-pn-sw-1".

Inspector IO-Device Device Number Update Rate (ms) 128 Reference Variable <None> \square Network Identification IO LAN LAN01 Device Name ge-glm104-pn-sw-2 Device Description 192.168.0.22 IP Address ⊟General GSDML-V2.3-GE-GLM104-20181123.xml GSDML Device Type GE-GLM104-PN GE-GLM104-PN Device Access Point ID Group IO References

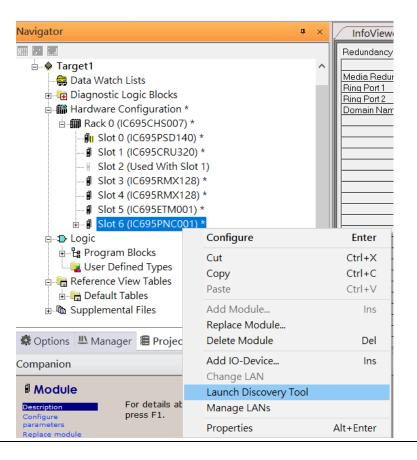

Figure 87: Device Name in "Network Identification"

Repeat these steps and use the following table to configure the parameters for the I/O Devices:

Device Name	IP Address	Device Name (Network Identification
ge-glm104-pn-sw-1	192.168.0.21	ge-glm104-pn-sw-1
ge-glm104-pn-sw-2	192.168.0.22	ge-glm104-pn-sw-2
ge-glm104-pn-sw-3	192.168.0.23	ge-glm104-pn-sw-3
ge-glm104-pn-sw-4	192.168.0.24	ge-glm104-pn-sw-4
ge-glm104-pn-sw-5	192.168.0.25	ge-glm104-pn-sw-5
ge-glm104-pn-sw-6	192.168.0.26	ge-glm104-pn-sw-6
ge-glm104-pn-sw-7	192.168.0.27	ge-glm104-pn-sw-7
ge-glm104-pn-sw-8	192.168.0.28	ge-glm104-pn-sw-8
versamax-pns-pnio-1	192.168.0.55	versamax-pns-pnio-1

When complete, the rack configuration will look like the figure below:

Figure 88: Fully Configured Rack



4.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool**.

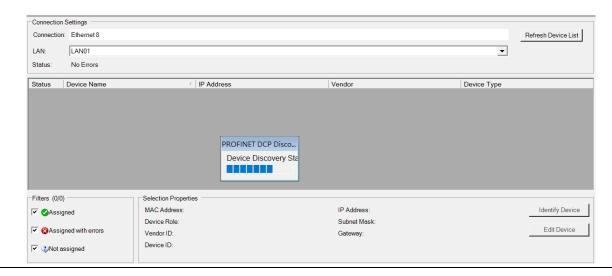
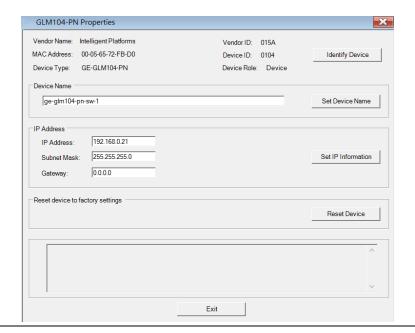

Note: Before downloading the configuration to CRU320, the user will need to unplug the block port according to the hardware topology to avoid loop.

Figure 89: Launch Dsicovery Tool

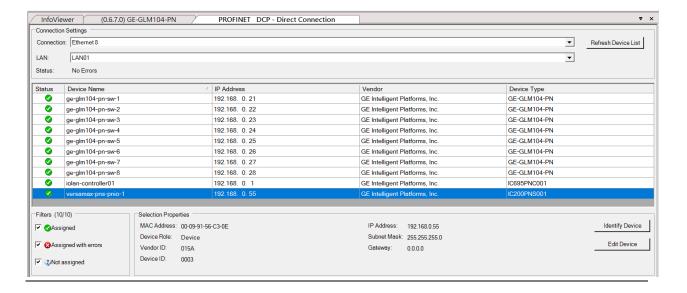
The tool is shown in the following picture, then press **Refresh Device List** and locate the connected I/O Device in the table.


Figure 90: Refreshing Device List

There are I/O Devices and their status are in "Not assigned". We need to change their device name to and IP address. Use **Identify Device** to make sure which device we set according to the hardware topology. Then start to set SW-1 device name and IP address.

Click **Edit Device**, set Device Name to **ge-glm104-pn-sw-1** and click **Set Device Name** button, then set IP Address to **192.168.0.21**, Subnet Mask to **255.255.255.0** and click **Set IP Information** button.

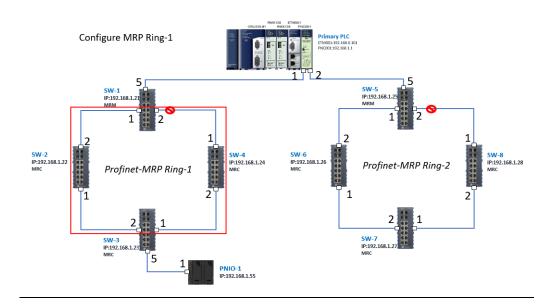
Figure 91: Setting Properties of Device



Follow the above steps for each of the I/O devices. Use the table below to set the values for each device.

Device Name	IP Address	Subnet Mask
ge-glm104-pn-sw-1	192.168.0.21	255.255.255.0
ge-glm104-pn-sw-2	192.168.0.22	255.255.255.0
ge-glm104-pn-sw-3	192.168.0.23	255.255.255.0
ge-glm104-pn-sw-4	192.168.0.24	255.255.255.0
ge-glm104-pn-sw-5	192.168.0.25	255.255.255.0
ge-glm104-pn-sw-6	192.168.0.26	255.255.255.0
ge-glm104-pn-sw-7	192.168.0.27	255.255.255.0
ge-glm104-pn-sw-8	192.168.0.28	255.255.255.0
versamax-pns-pnio-1	192.168.0.55	255.255.255.0

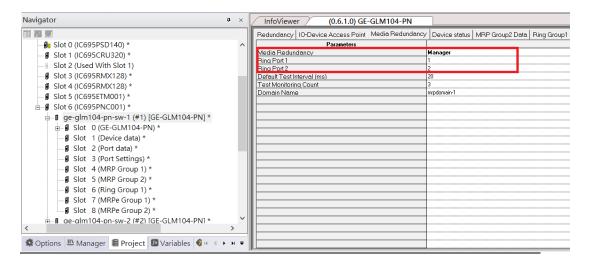
After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.


Figure 92: Assigned Devices

4.2.6 MRP Setting

To being, we will configure the MRP outlined in the red box of the Profinet MRP Ring-1 configuration

Figure 93: Configuring MRP Ring-1



In order to enable MRP function in SW1, right-click the target and choose Configure.

Enable MRP function by changing the value of **Media Redundancy** to **manager** and set **Ring Port 1** to **1**, **Ring Port 2** to **2**.

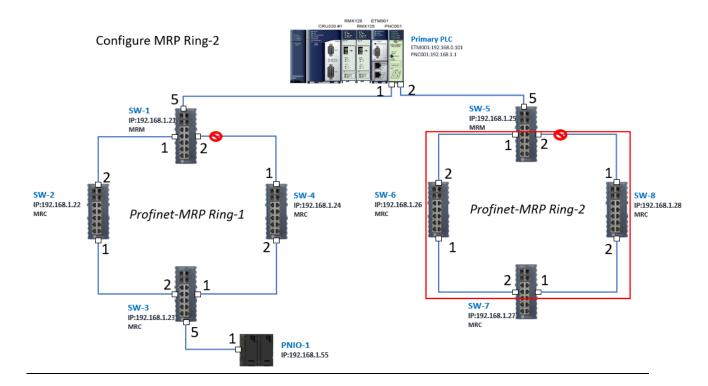

Repeat these sets to enable MRP function for SW2-SW4.

Figure 94: Configuring Medi Redundancy Parameters

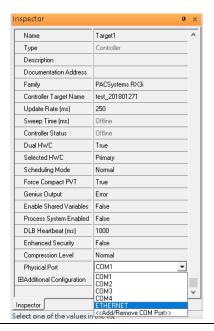
Repeat the steps above to configure MRP outlined in the red box of the Profinet MRP Ring-2 configuration.

Figure 95: Configuring MRP Ring-2

4.2.7 Network Setting

To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

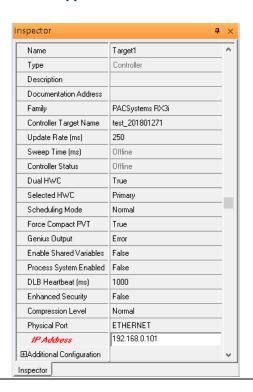
It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.


I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified. Click primary or secondary hardware configuration, click the right button,
	and select Set as Selected HWC.
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

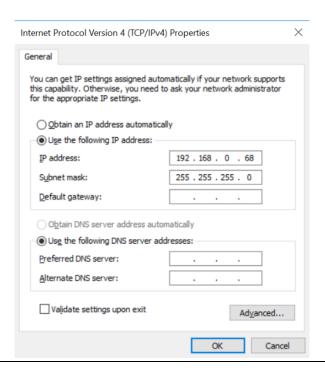
For rule 3, click **Target 1** and Select **Property.**

In the Inspector pane, change the value of Physical Port to Ethernet.


Figure 96: Changing the Physical Port Parameter

Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.


Figure 97: Specified IP Address Appears

4.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 98: Setting the IP Address of the PC with PME

4.2.9 Temporary IP

However, if the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

Settings RS-232 Port (Station Manager) Power Consumption Data Monitor EGD Management Tool

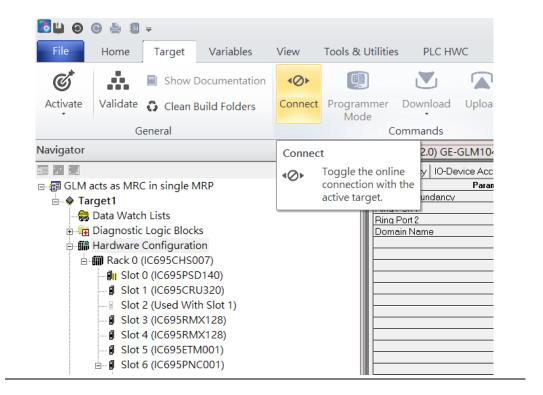

PAC8000 I/O Configuration Tool Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask VersaMotion Servo Configuration Tool Gateway IP Address Name Server IP Address VersaConf Safety Tool Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using hexadecimal notation (six 2-digit pairs). Status Address Redundant IP I/O Scan Set IP Address to Set Set IP Enter IP address using dotted decimal notation. 0.0.0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Cache button to clear this cache. Clear Cache If your computer has multiple network interfaces, you may pick the one to use Enable interface selection ∕... [2 ...] [3 v...] ? l...

Figure 99: Set Temporary IP Address

4.3 Implementation

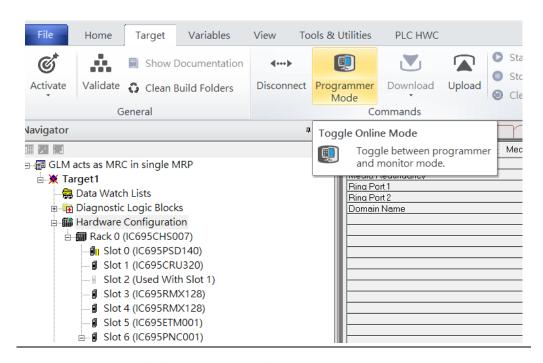

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 100: Connecting to Target

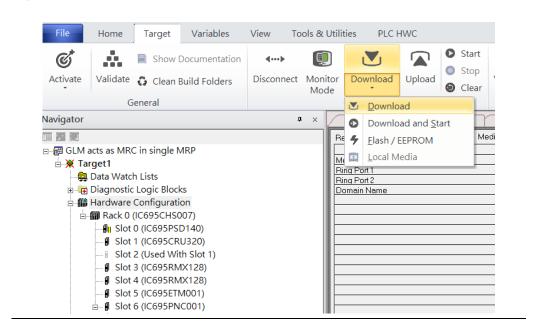

Then press the icon **Programmer Mode.**

Figure 101: Programmer Mode

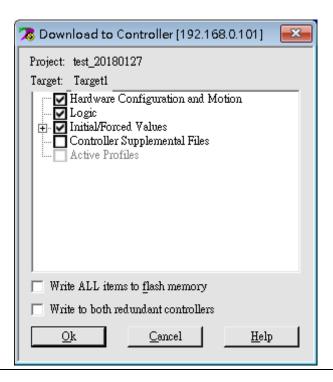

Then press icon **Download** and select **Download**.

Figure 102: Download

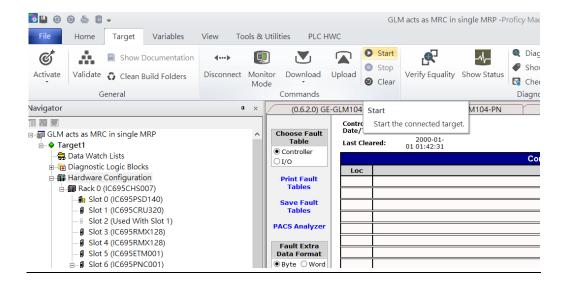
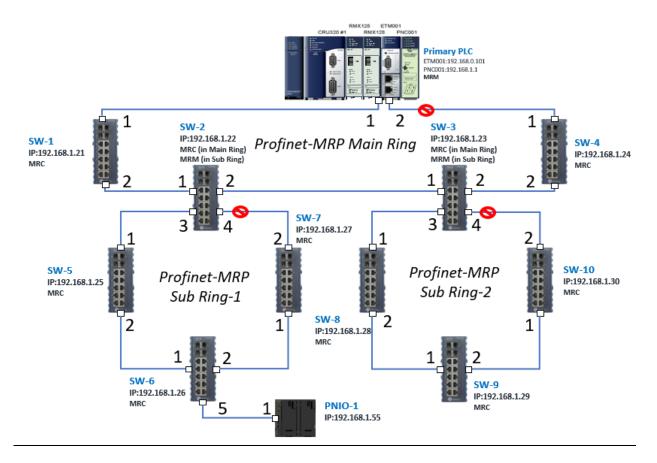

Then the dialogue is appeared to make sure the initialization procedure, select **OK.**

Figure 103: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".


Figure 104: Start

Section 5 PROFINET-MRP Main Ring Couples Multiple PROFINET-MRP Subrings

5.1 Network Topology

Figure 105: PROFINET-MRP Main Ring couples multiple PROFINET-MRP Subrings

5.2 Hardware Configuration

On the CRU320, the I/O data can be set to "STOP", "RUN OUTPUT DISABLE" or "RUN I/O Enable" states by a switch imbedded on CRU320. During the configuration, the switches on both 2 CRU320s must be set to "STOP"

5.2.1 Project Open

To start the software PAC Machine Edition, please follow the steps below:

- 4. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 5. Select the empty project and click **OK**
- 6. Set the project name and click **OK**.

Figure 106: Create a new project

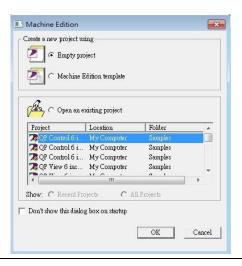
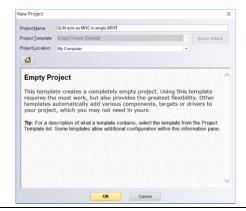
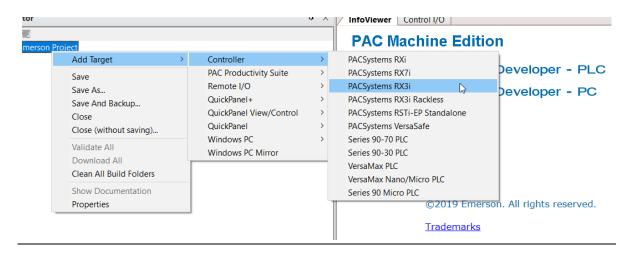



Figure 107: New Project Name

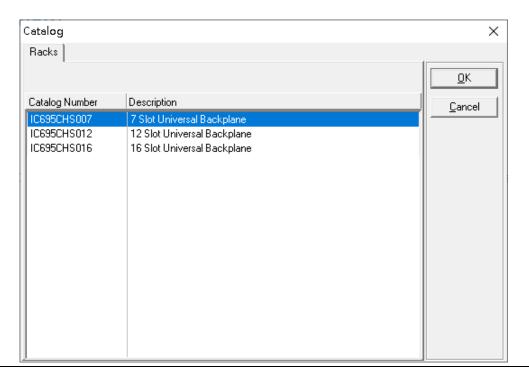

5.2.2 I/O Controller Setting

Next step is to add a target for this project.

Click right button on project name **GLM act as MRC in single MRC group** and select **Add Target** -> **Controller** -> **PACSystems RX3i**.

The PACSystems RX3i is the I/O Controller to be tested. See the following picture.

Figure 108: Add Controller



Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller. However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.

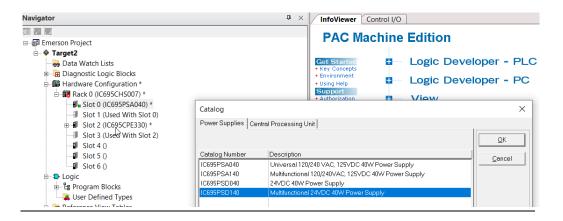
Click right button on "Rack 0 (IC695CHS012)" and select Replace Rack.

Select IC695CHS007 and click OK.

Figure 109: Selecting IC695CHS007

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller

Figure 110: Rack Configuration

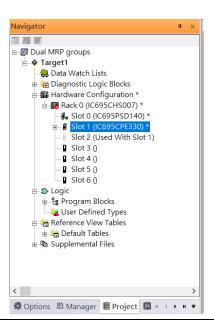

From left to right, the installed devices on the I/O Controller are

Devices on I/O Controller

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index. First of all, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PSD140, then click **OK**.

Figure 111: Replace Module


Slot 0

Slot 0 is replaced by current power card, PSD140.

Slot 1 and 2

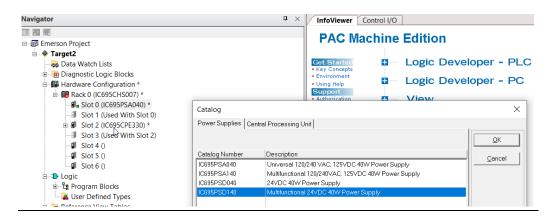
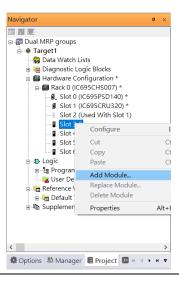

For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1. Now the slot 2 is cleaned.

Figure 112: Integrate Slot 1 and 2

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace Module** to choose CRU320. Then choose **No**.

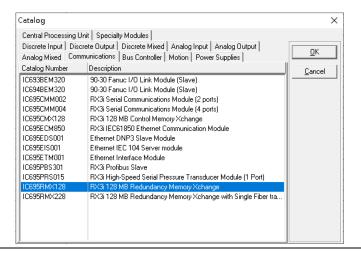
Figure 113: Replace Module



5.2.2.1 Slot 3

Next is to add RMX128 module for slot 3

Click the right button on slot 3, select **Add Module**.


Figure 114: Add Module

According to the current installation on the I/O Controller, select the RMX28 module.

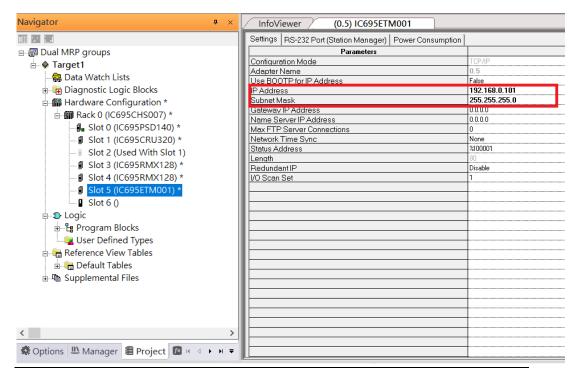
Select **Communications** -> **IC695RMX128** and click **OK.** The RMX128 is now ready configured on slot 3.

Figure 115: RMX128

5.2.2.2 Slot 4

Repeat these steps to add an RMX128 module to slot 4.

5.2.2.3 Slot 5

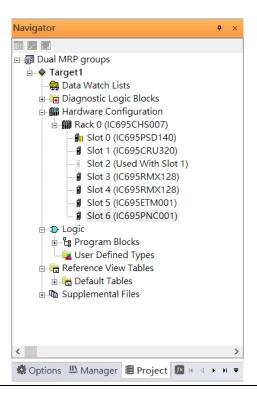

Next, select the ETM001 for slot 5.

Click the right button on slot 5, select **Add Module**, select **Communications IC695ETM00** and click **OK.**

It should be note that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and Subnet Mask shall be specified.

In the following picture, the IP address 192.168.0.101 and mask 255.255.255.0 is specified on ETM001.

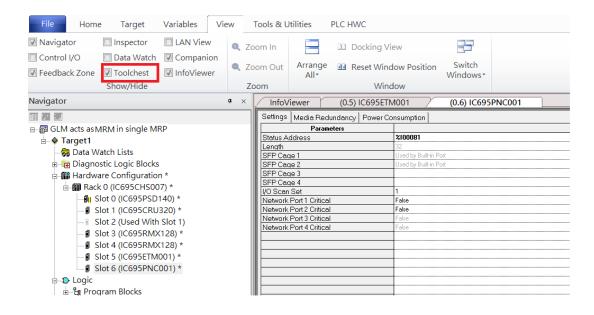
Figure 116: ETM001 Parameters


5.2.2.4 Slot 6

Next, select PNC001 for slot 6.

Click slot 6 and click the right button, select **Add Module** specify the installed Bus Controller, PNC001 and click **OK**.

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 117: Configured Rack

5.2.3 I/O Device Setting


This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest**.

Figure 118: Toolchest feature

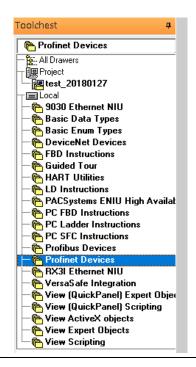

As shown in the following picture, the interface is created on the right-hand side.

Figure 119: Default Toolchest Interface Location

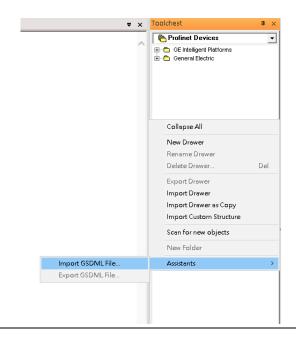

Select Profinet Devices from the Toolchest.

Figure 120: Profinet Devices

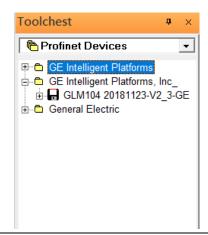

Click right button, select **Assistants** -> **Import GSDML File** ...

Figure 121: Importing the GSDML File

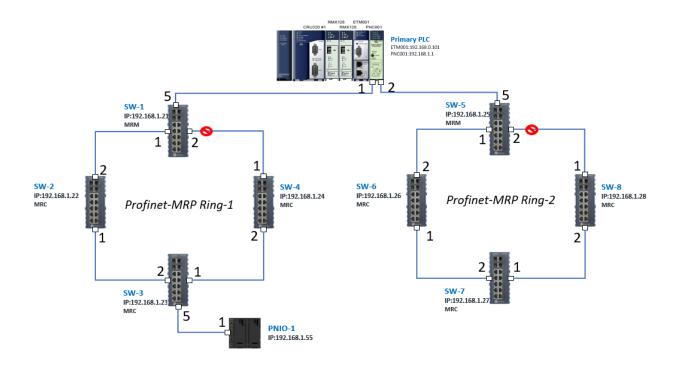

Select the GSDML File to open. The corresponding I/O Device of GSDML File is added in the Toolchest.

Figure 122: GSDML File Added to the Toolchest

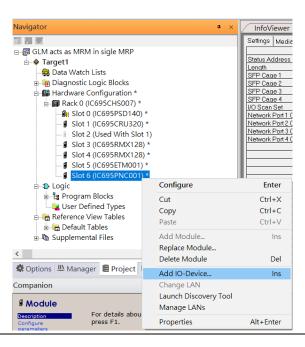
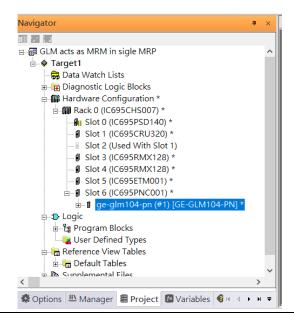

In this document, there are nine I/O devices and one I/O controller. I/O devices are eight switches and one Emerson VersaMax PROFINET I/O Scanner.

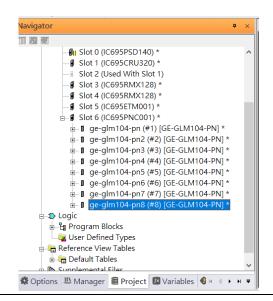
Figure 123: Multiple PROFINET-MRP Rings

The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001.


Figure 124: Add the I/O Device on PNC001

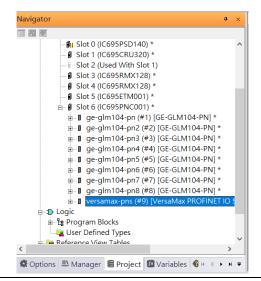
Select the specified I/O Service-> GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click **OK**.

Now the I/O device GLM104(SW1) is ready and is a sub slot on PNC001.


Figure 125: SW1 is Configured with GLM104-PN

5.2.3.1 GLM104-PN2 through GLM104-PN8

Repeat this process to add the second through the eighth I/O devices to the PNC001. The final results will look like the figure below:

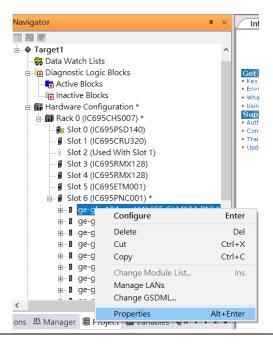

Figure 126: Eight I/O Devices Added to the PNC001

Finally, add the ninth I/O device in the PNC001. This will be the VersaMax PROFINET IO Scanner.

Now the I/O device VersaMax PROFINET IO Scanner is ready and is a sub slot on PNC001.

Figure 127: All Nine I/O Devices Added to the PNC001

5.2.4 DCP Set Command

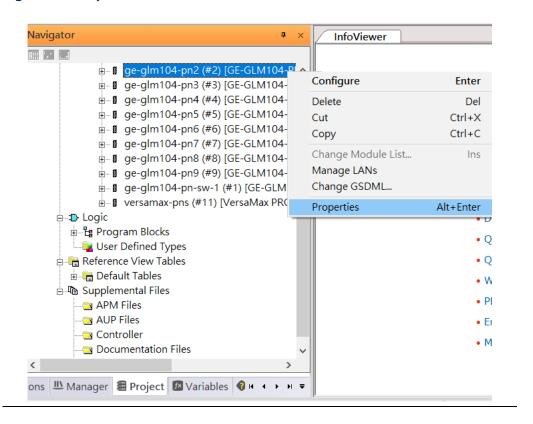

To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).

5.2.4.1 GLM104-PN

Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn, and click the right button.

Select **Properties**, see the following picture.

Figure 128: Properties


In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm104-pn-sw-1" and IP address to "192.168.0.21" then we use I/O Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm104-pn-sw-1".

5.2.4.2 GLM104-PN2

Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn2, and click the right button.

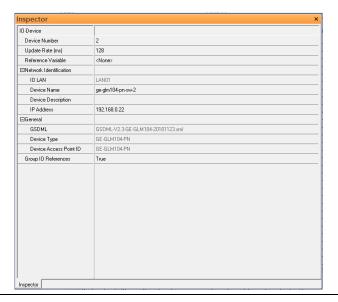
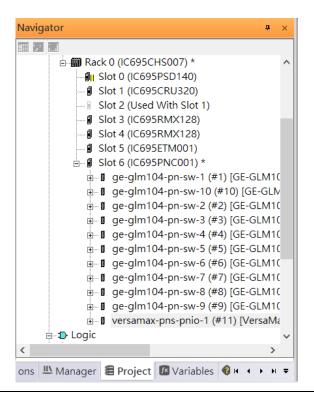

Select **Properties**, see the following picture.

Figure 129: Properties

We modify device name to "ge-glm104-pn-sw-2" and IP address to "192.168.0.22" then we use I/O Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm104-pn-sw-2" later.

Figure 130: Device Name

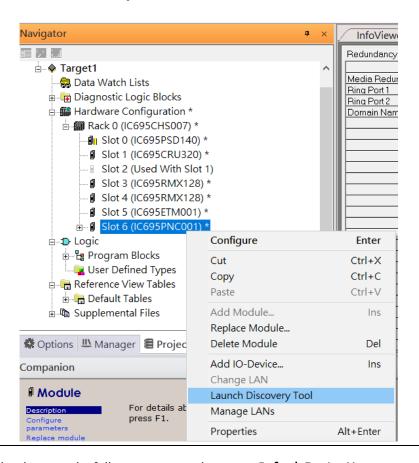

5.2.4.3 GLM10-PN3 through GLM-PN10

Repeat this process and for the remaining I/O Devices. Use the table below to define the device name and IP address for each I/O device:

I/O Device	IP Address	Device Name
GLM10-PN	192.168.0.21	ge-glm104-pn-sw-1
GLM10-PN2	192.168.0.22	ge-glm104-pn-sw-2
GLM10-PN3	192.168.0.23	ge-glm104-pn-sw-3
GLM10-PN4	192.168.0.24	ge-glm104-pn-sw-4
GLM10-PN5	192.168.0.25	ge-glm104-pn-sw-5
GLM10-PN6	192.168.0.26	ge-glm104-pn-sw-6
GLM10-PN7	192.168.0.27	ge-glm104-pn-sw-7
GLM10-PN8	192.168.0.28	ge-glm104-pn-sw-8
GLM10-PN9	192.168.0.29	ge-glm104-pn-sw-9
GLM10-PN10	192.168.0.30	ge-glm104-pn-sw-10
VERSAMAX-PNIO	192.168.0.55	versamax-pns-pnio-1

Now all the devices have been changed their device name and IP address like the following picture.

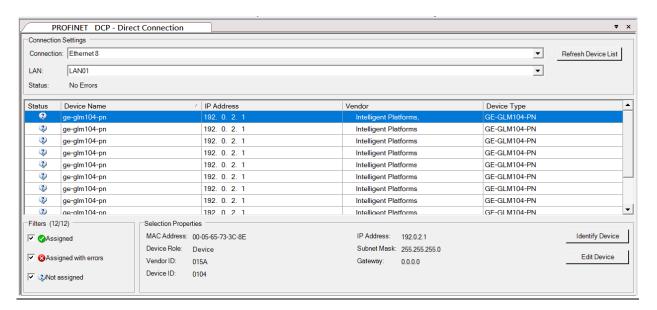
Figure 131:Finished Configuration



5.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool**.

Note: Before we finish downloading the configuration to CRU320, need to unplug the block port according to the hardware topology to avoid loop.


Figure 132: Launch Discovery Tool

The tool is shown in the following picture, then press **Refresh Device List**.

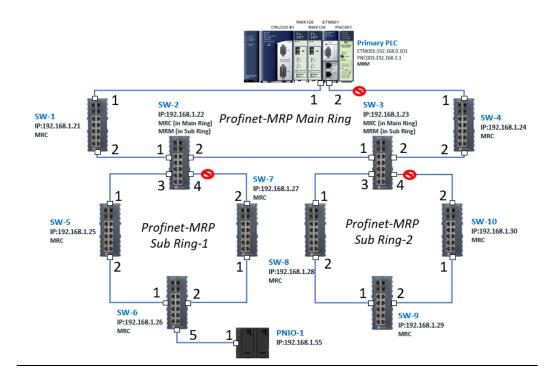

Then the connected I/O Device is listed in the following table.

Figure 133: Select the Target I/O Device

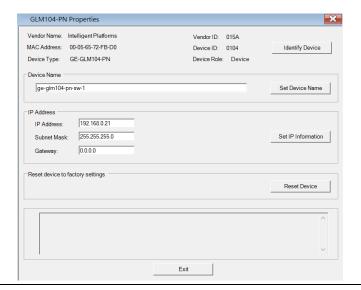
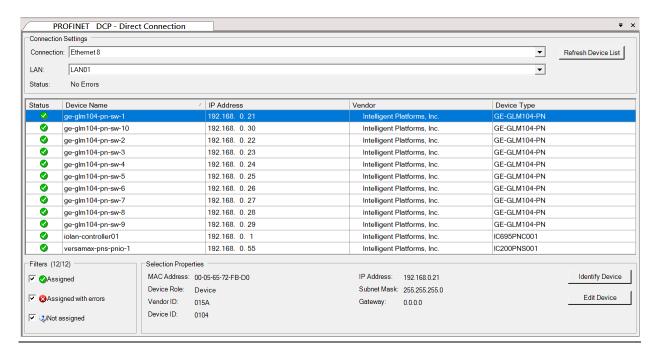

There are I/O Devices and their status are in "Not assigned". We need to change their device name to and IP address. Use **Identify Device** to make sure which device we set according to the hardware topology. Then start to set SW-1 device name and IP address.

Figure 134: Configuration Overview

Click **Edit Device**, set Device Name to **ge-glm104-pn-sw-1** and click Set Device Name button, then set IP Address to **192.168.0.21**, Subnet Mask to **255.255.255.0** and click **Set IP Information** button.

Figure 135: Setting Device Parameters

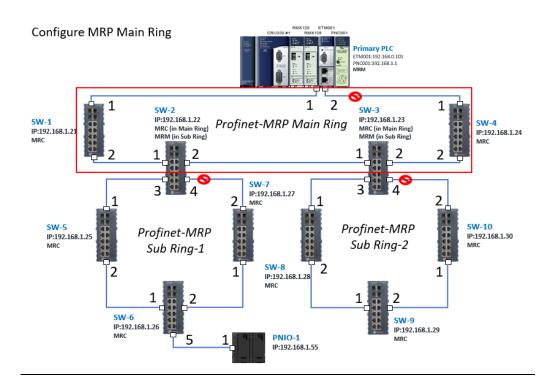


Repeat these steps for all I/O devices. Follow the table below to ensure that all devices receive the appropriate values.

Device Name	IP Address	Subnet Mask
ge-glm104-pn-sw-1	192.168.0.21	255.255.255.0
ge-glm104-pn-sw-2	192.168.0.22	255.255.255.0
ge-glm104-pn-sw-3	192.168.0.23	255.255.255.0
ge-glm104-pn-sw-4	192.168.0.24	255.255.255.0
ge-glm104-pn-sw-5	192.168.0.25	255.255.255.0
ge-glm104-pn-sw-6	192.168.0.26	255.255.255.0
ge-glm104-pn-sw-7	192.168.0.27	255.255.255.0
ge-glm104-pn-sw-8	192.168.0.28	255.255.255.0
ge-glm104-pn-sw-9	192.168.0.29	255.255.255.0
ge-glm104-pn-sw-10	192.168.0.30	255.255.255.0
Versamax-PNS-PNIO-1	192.168.0.55	255.255.255.0

After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.

Figure 136: Device Name and IP Addresses Assigned


5.2.6 MRP Setting

The steps to enable MRP functionality on the I/O controller and I/O devices will be the same for all components in the figure below. Refer to this section to configure SW1-SW10.

5.2.6.1 SW1 through SW4

We will be setting MRP for I/O controller and I/O devices highlighted in the red box below.

Figure 137: MRP Setting for Main Ring

In order to enable MRP function in I/O controller, right-click on the target I/O controller or I/O device and choose **Configure**.

It will show **Media Redundancy** on the right window.

Navigator (0.6) Settings N - ♦ Target1 a Data Watch Lists Status Addr Length SFP Cage (🖹 🕞 Diagnostic Logic Blocks Active Blocks SFP Cage (SFP Cage (I/O Scan Se Inactive Blocks Tardware Configuration - Rack 0 (IC695CHS007) Network Po Network Po Network Po II Slot 0 (IC695PSD140) ■ Slot 1 (IC695CRU320) Network Po Slot 2 (Used With Slot 1) ■ Slot 3 (IC695RMX128) Slot 4 (IC695RMX128) Slot 5 (IC695ETM001)
 Slot 5 (IC695ETM001) Slot 6 (IC695 Configure Enter ⊕ ¶ ge-glm10 Cut Ctrl+X ⊕ ge-glm10 Сору ⊕ ¶ ge-glm10 ⊕ ge-glm10 Paste Ctrl+V ⊕ ge-glm10 Add Module. ⊞ ge-glm10 Replace Module... ⊕ ¶ ge-glm10 Delete Module Del ⊕ ¶ ge-glm10 Add IO-Device... ⊕ ¶ ge-glm10 Change LAN ⊕ ¶ ge-glm10 Launch Discovery Tool 🖶 🐌 Logic Manage LANs ⊕ 🖺 Program Blocks Properties Alt+Enter 📲 User Defined Ty, Reference View Tables Options
 Manager
 Project
 Variable
 ✓ ▶
 ▼
 Variable
 ✓ ▶
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼

 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼
 ✓ ▼

 ✓ ▼
 ✓ ▼

 ✓ ▼
 ✓ ▼

 ✓ ▼

 ✓ ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

   ▼

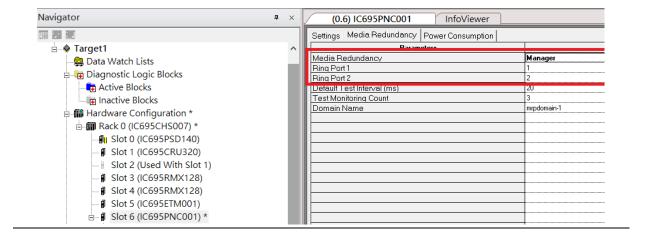
   ▼

   ▼

   ▼

   ▼

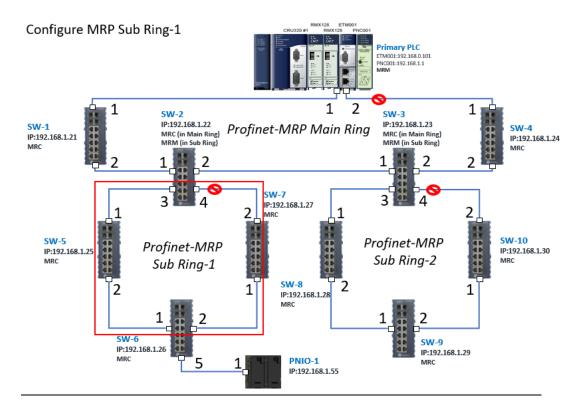
   ▼


   ▼

   ▼

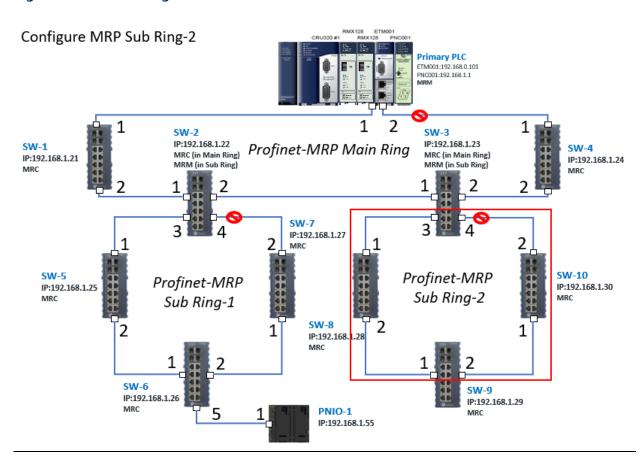
Figure 138: Configure the Target I/O Controller

Enable MRP function by changing the value of **Media Redundancy** to Manager and select **Ring Port 1** to **1**, **Ring Port 2** to **2**. Repeat these steps for all SW slots in the main ring.


Figure 139: Media Redundancy Parameters

5.2.6.2 SW5 through SW7

Next, configure the MRP in Profinet MRP Sub Ring-1 (highlighted in the red box below). Refer to the steps outlined in Section 5.2.6.1to enable MRP functionality for SW5-SW7.


Figure 140: PROFINET-MRP Sub-Ring1

5.2.6.3 SW8 through SW10

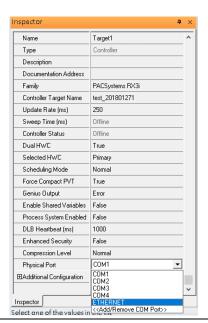
Next, configure the MRP in Profinet MRP Sub Ring-2 (highlighted in the red box below). Refer to the steps outlined in Section 5.2.6.1to enable MRP functionality for SW8-SW10.

Figure 141: MRP Sub Ring-2

5.2.7 Network Setting

To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

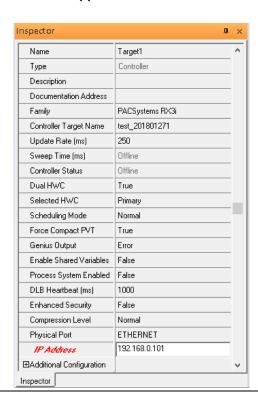
It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.


I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified.
	Click primary or secondary hardware configuration, click the right button, and select Set as Selected HWC .
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

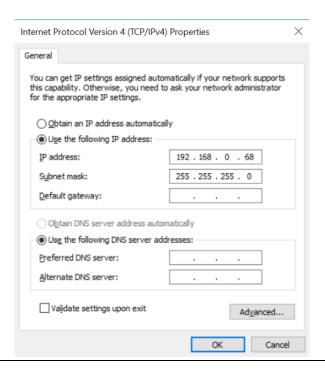
For rule 3, click Target 1 and Select Property.

In the Inspector pane, change the value of Physical Port to Ethernet.


Figure 142: Changing the Physical Port Parameter

Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.


Figure 143: Specified IP Address Appears

5.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 144: Setting the IP Address of the PC with PME

5.2.9 Temporary IP

However, if the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

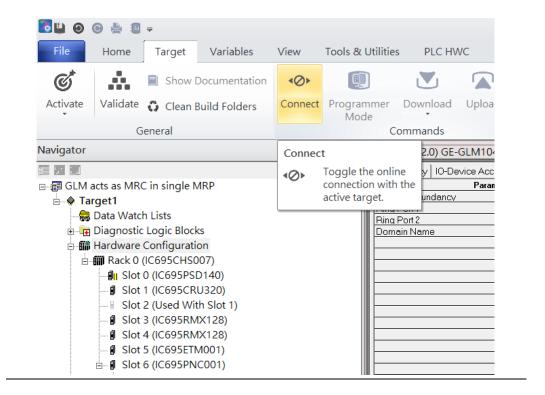

Settings RS-232 Port (Station Manager) Power Consumption Data Monitor EGD Management Tool
PAC8000 I/O Configuration Tool Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask VersaMotion Servo Configuration Tool Gateway IP Address Name Server IP Address VersaConf Safety Tool Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using hexadecimal notation (six 2-digit pairs). Status Address Redundant IP I/O Scan Set IP Address to Set-Set IP Enter IP address using dotted decimal notation. 0.0.0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Cache button to clear this cache. Clear Cache If your computer has multiple network interfaces, you may pick the one to use Enable interface selection 🥕 ... 🗟 ... 📴 ... 💈 V... 💡 I...

Figure 145: Set Temporary IP Address

5.3 Implementation

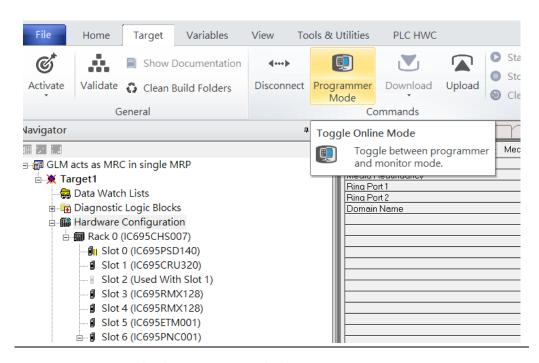

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 146: Connecting to Target

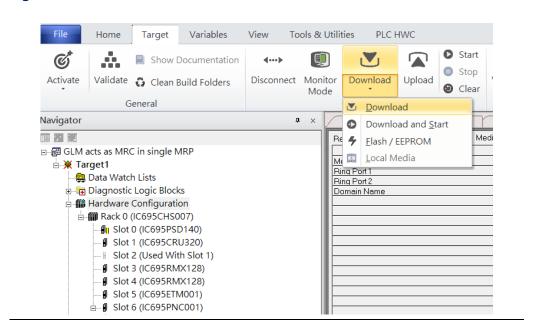

Then press the icon **Programmer Mode**.

Figure 147: Programmer Mode

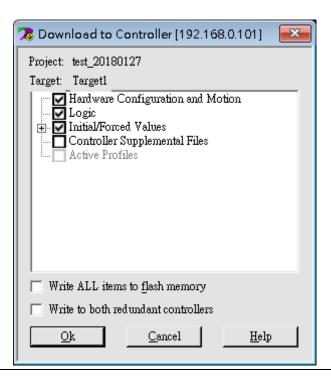

Then press icon **Download** and select **Download**.

Figure 148: Download

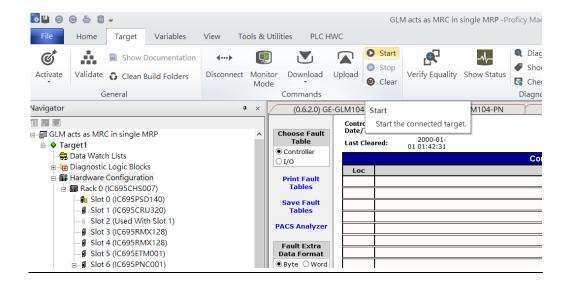
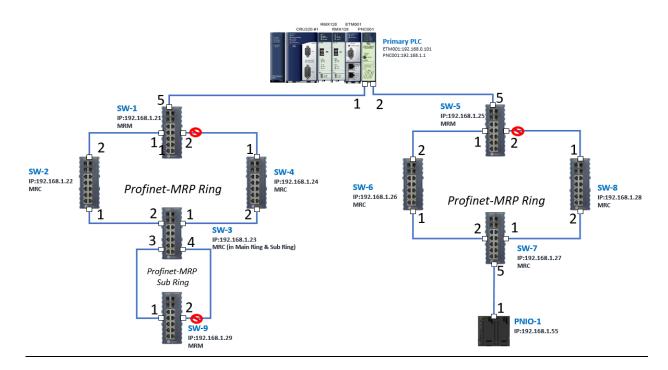

Then the dialogue is appeared to make sure the initialization procedure, select **OK**.

Figure 149: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".


Figure 150: Start

Section 6 Multiple PROFINET MRP Ring and Subring

6.1 Network Topology

Figure 151: Multiple PROFINET MRP Ring and Subring

6.2 Hardware Configuration

On the CRU320, the I/O data can be set to "STOP", "RUN OUTPUT DISABLE" or "RUN I/O Enable" states by a switch imbedded on CRU320.

During the configuration, the switches on both 2 CRU320s must be set to "STOP"

6.2.1 Project Open

To start the software PAC Machine Edition, please follow the steps below:

- 1. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 2. Select the empty project and click **OK**.
- Set the project name and click OK.

Figure 152: Create a new project

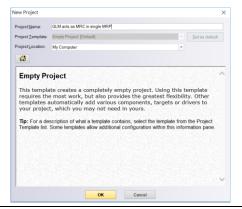
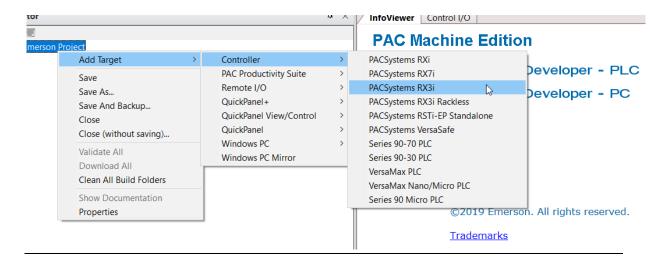



Figure 153: New Project Name

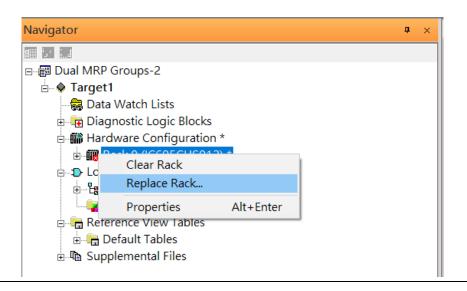

6.2.2 I/O Controller Setting

Next step is to add a target for this project.

Click right button on project name **GLM act as MRC in single MRC group** and select **Add Target -> Controller-> PACSystems RX3i**.

The PACSystems RX3i is the I/O Controller to be tested. See the following figure:

Figure 154: Adding an I/O Controller



Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller.

However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.

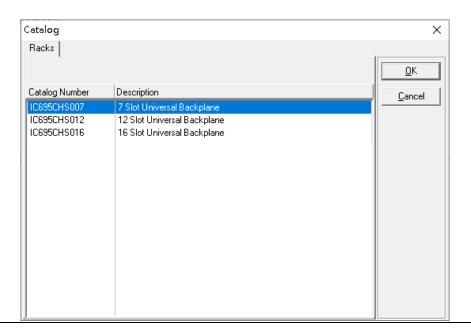

Click right button on Rack 0 (IC695CHS012) and select Replace Rack...

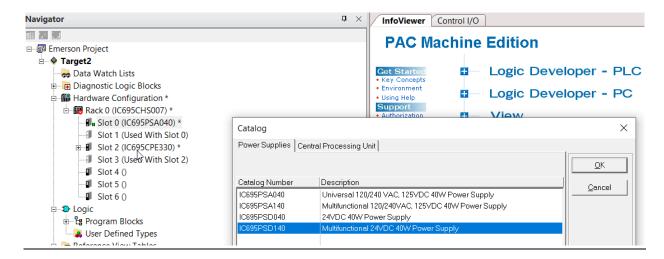
Figure 155: Replace Rack

Select "IC695CHS007" and click OK.

Figure 156: Select CHS007

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller

Figure 157: Rack Configuration for this Application


From left to right, the installed devices on the I/O Controller are

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index.

First, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PSD140, then click **OK**.

Figure 158: Replace Module

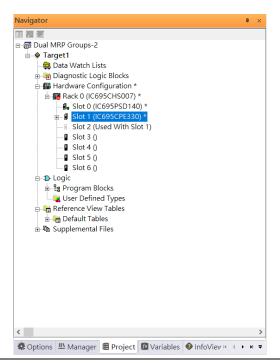
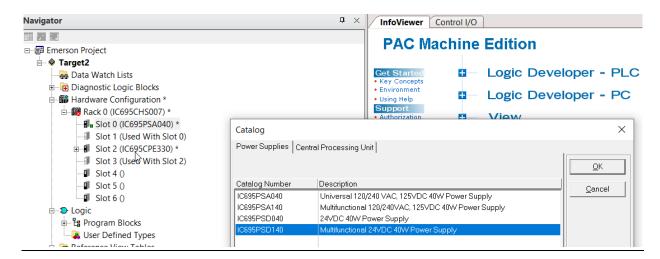

Slot 0 is replaced by current power card, PSD140.

Figure 159: PSD140

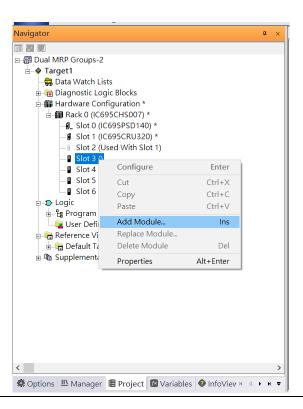
For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1


Figure 160: Slot 1 and 2 are Integrated

Now the slot 2 is clear.

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace Module** to choose CRU320 and select **No.** Now the CRU320 is specified.

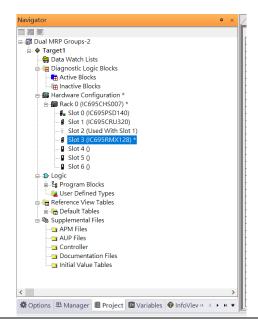
Figure 161: Replace Module



6.2.2.1 Slot 3

Next, add RMX128 module for slot 3.

Click the right button on slot 3, select **Add Module**.


Figure 162: Add Module

According to the current installation on the I/O Controller, the RMX128 shall be select. Select **Communications** -> **IC695RMX128** and click **OK**.

Now the RMX128 is ready on slot 3.

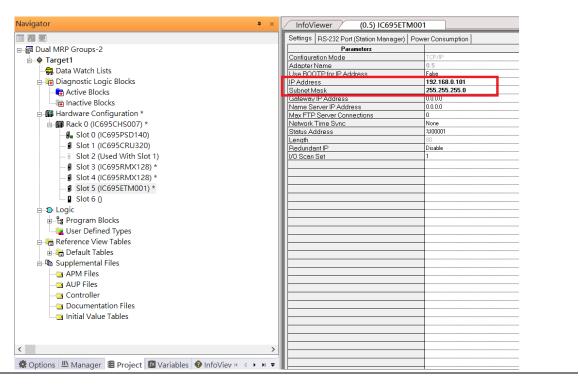
Figure 163: RMX128 Assigned to Slot 3

6.2.2.2 Slot 4

Next, repeat these steps to set the RMX128 for slot 4.

Click the right button on slot 4, select **Add Module**, select **Communications** -> **IC695RMX128** and click **OK**.

6.2.2.3 Slot 5

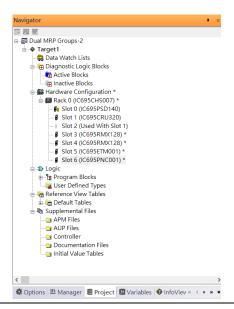

Repeat these steps to select the ETM001 for slot 5.

Click the right button on slot 5, select **Add Module**, select **Communications** -> **IC695ETM001** and click **OK**.

It should be noted that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and Subnet Mask shall be specified.

In the following picture, the IP address 192.168.0.101 and mask 255.255.255.0 is specified on ETM001.

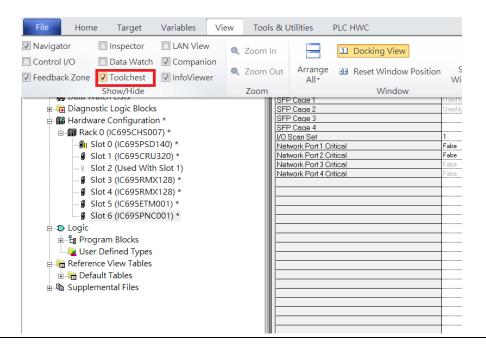
Figure 164: ETM001 Configured Parameters


6.2.2.4 Slot 6

Next, select PNC001 for slot 6.

Click slot 6 and click the right button, select **Add Module**, specify the installed Bus Controller, PNC001 and click **OK.**

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 165: Final Configuration

6.2.3 I/O Device Setting

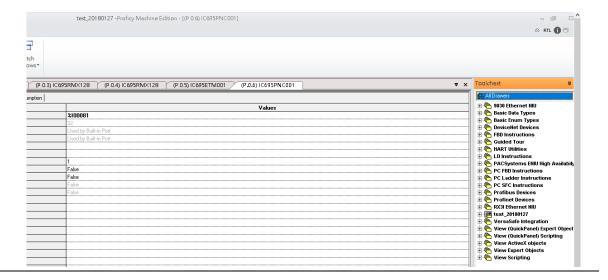

This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest.**

Figure 166: Location of Toolchest button

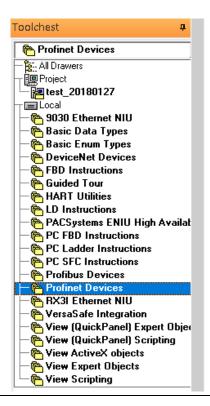

As shown in the following picture, a new interface is created on the right-hand side.

Figure 167: Toolchest Panel

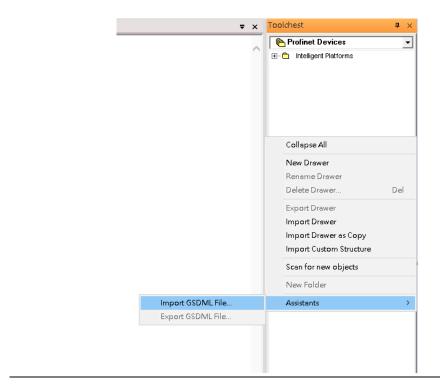

Select Profinet Devices.

Figure 168: Select Profinet Devices from the Toolchest

Click right button, select **Assistants** -> **Import GSDML File** and select the target file.

Figure 169: Select the GSDML File

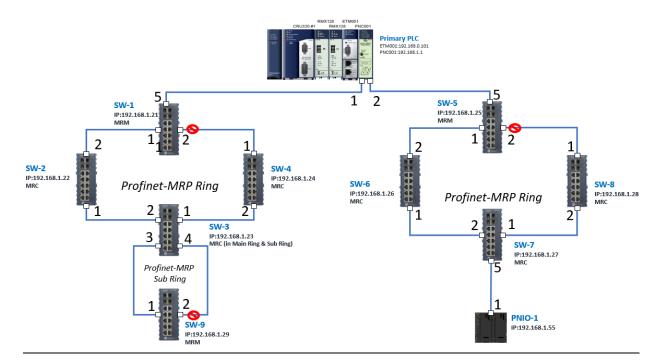

Then the corresponding I/O Device of GSDML File is added in the **Toolchest.**

Figure 170: Imported GSDML File

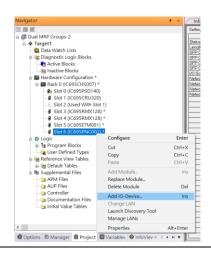
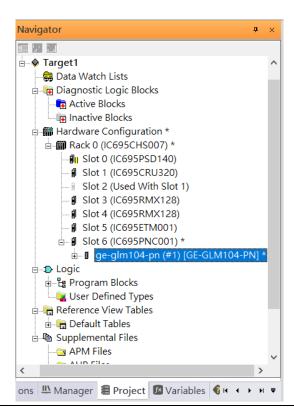

In this section, there are ten I/O devices and one I/O controller. I/O devices are nine switches and one Emerson VersaMax PROFINET I/O Scanner.

Figure 171: PROFINET-MRP Main Ring couples multiple PROFINET-MRP Subrings

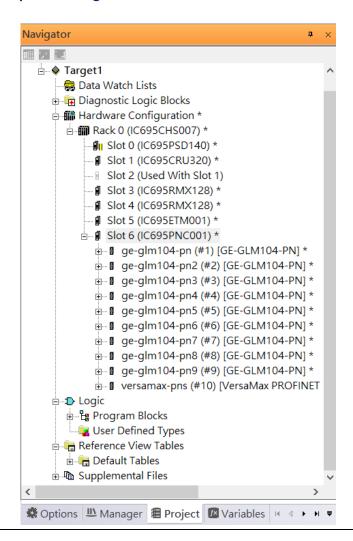
The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001.


Figure 172: Add I/O Device

Select the specified I/O Service-> GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click OK.

Now the I/O device GLM104(SW1) is ready and is a sub slot on PNC001.

Figure 173: GLM104 (SW1)

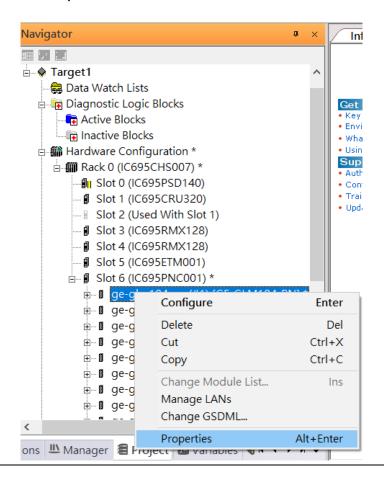


6.2.3.1 SW2 – SW10

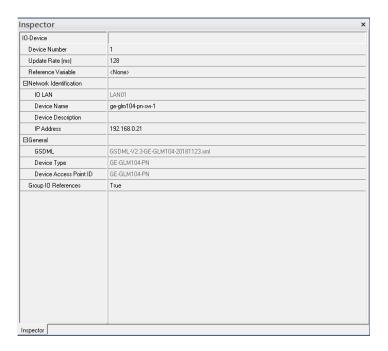
Repeat this process to add the second through the tenth I/O devices to the PNC001. The final results will look like the figure below:

Now the I/O device VersaMax PROFINET IO Scanner is ready and is a sub slot on PNC001.

Figure 174: Completed Configuration


6.2.4 DCP Set Command

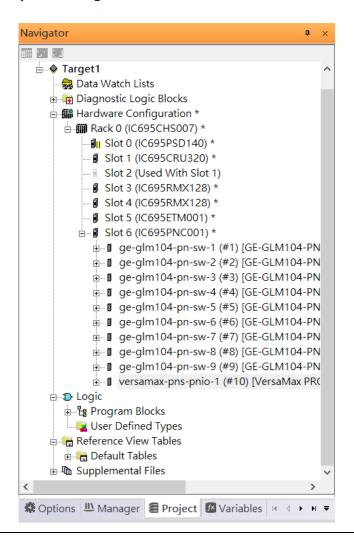
To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).


Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn, and click the right button.

Select **Properties**, see the following picture.

Figure 175: Select Properties

In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm104-pn-sw-1" and IP address to "192.168.0.21" then we use I/O Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm104-pn-sw-1".

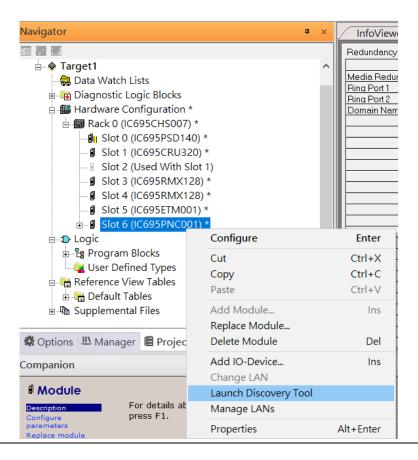

6.2.4.1 GLM104-PN2 through VERSAMAX-PNS-PNIO-1

Repeat this process and for the remaining I/O Devices. Use the table below to define the device name and IP address for each I/O device:

I/O Device	IP Address	Device Name
GLM10-PN	192.168.0.21	ge-glm104-pn-sw-1
GLM10-PN2	192.168.0.22	ge-glm104-pn-sw-2
GLM10-PN3	192.168.0.23	ge-glm104-pn-sw-3
GLM10-PN4	192.168.0.24	ge-glm104-pn-sw-4
GLM10-PN5	192.168.0.25	ge-glm104-pn-sw-5
GLM10-PN6	192.168.0.26	ge-glm104-pn-sw-6
GLM10-PN7	192.168.0.27	ge-glm104-pn-sw-7
GLM10-PN8	192.168.0.28	ge-glm104-pn-sw-8
GLM10-PN9	192.168.0.29	ge-glm104-pn-sw-9
GLM10-PN10	192.168.0.30	ge-glm104-pn-sw-10
VERSAMAX-PNIO	192.168.0.55	versamax-pns-pnio-1

Now all the devices have been changed their device name and IP address like the following picture.

Figure 176: Completed Configuration



6.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool.**

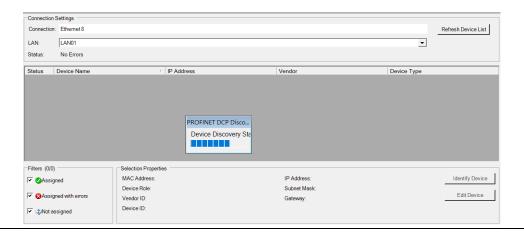

Note: Before we finish downloading the configuration to CRU320, need to unplug the block port according to the hardware topology to avoid loop.

Figure 177: Launch Discovery Tool

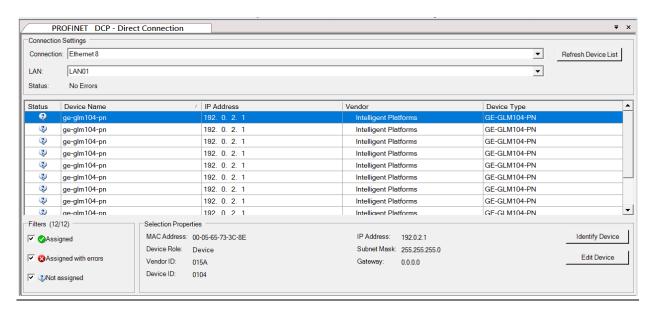

The tool is shown in the following picture, then press Refresh Device List.

Figure 178: Refresh Device List

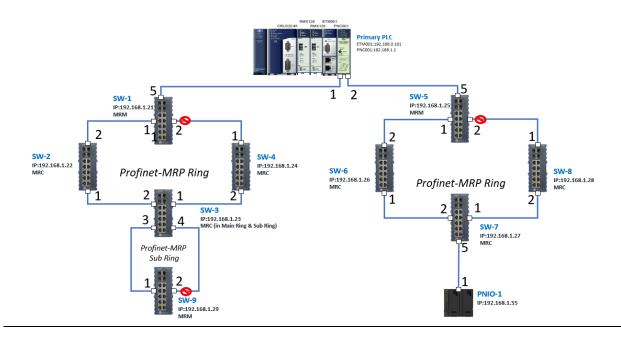
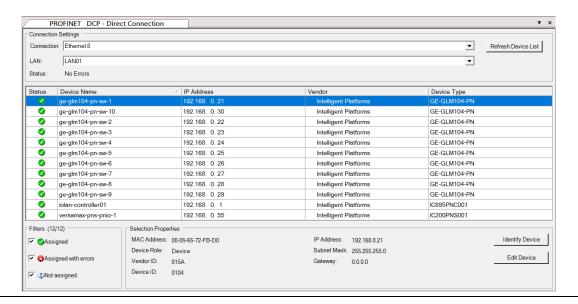

Then the connected I/O Device is listed in the following table.

Figure 179: Identify Device

There are I/O Devices and their status are in "Not assigned". We need to change their device name to and IP address. Use **Identify Device** to make sure which device we set according to the hardware topology. Then start to set SW-1 device name and IP address.

Figure 180: Multiple PROFINET MRP Ring and Subring

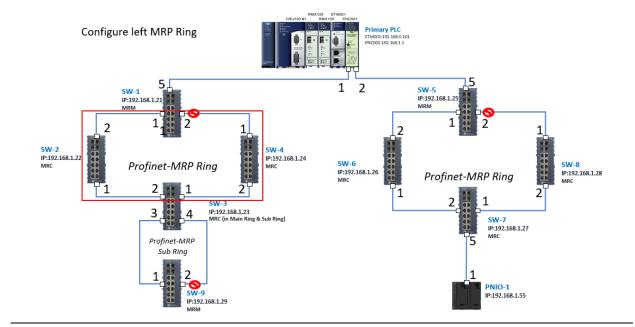

Click **Edit Device**, set Device Name to "ge-glm104-pn-sw-1" and click **Set Device Name** button, then set IP Address to "192.168.0.21", Subnet Mask to "255.255.255.0" and click **Set IP Information** button.

Repeat these steps for all I/O devices. Follow the table below to ensure that all devices receive the appropriate values.

Device Name	IP Address	Subnet Mask
ge-glm104-pn-sw-1	192.168.0.21	255.255.255.0
ge-glm104-pn-sw-2	192.168.0.22	255.255.255.0
ge-glm104-pn-sw-3	192.168.0.23	255.255.255.0
ge-glm104-pn-sw-4	192.168.0.24	255.255.255.0
ge-glm104-pn-sw-5	192.168.0.25	255.255.255.0
ge-glm104-pn-sw-6	192.168.0.26	255.255.255.0
ge-glm104-pn-sw-7	192.168.0.27	255.255.255.0
ge-glm104-pn-sw-8	192.168.0.28	255.255.255.0
ge-glm104-pn-sw-9	192.168.0.29	255.255.255.0
ge-glm104-pn-sw-10	192.168.0.30	255.255.255.0
Versamax-PNS-PNIO-1	192.168.0.55	255.255.255.0

After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.

Figure 181: Device Name and IP Addresses Assigned


6.2.6 MRP Setting

The steps to enable MRP functionality on the I/O controller and I/O devices will be the same for all components in the figure below. Refer to this section to configure SW1-SW10.

6.2.6.1 SW1 through SW4

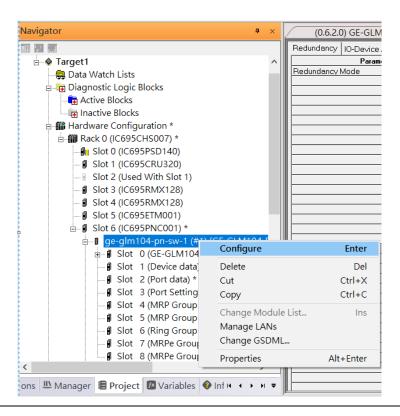
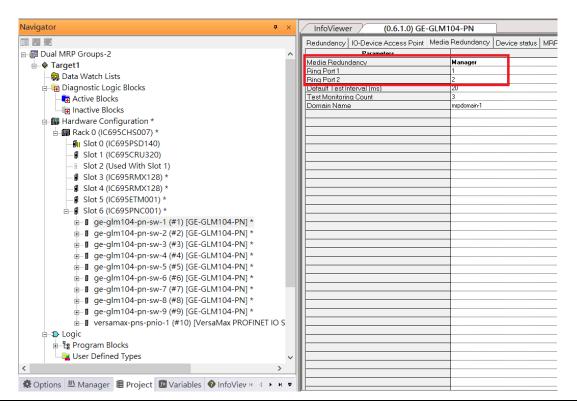

We will be setting MRP for I/O controller and I/O devices highlighted in the red box below. First, configure the MRPe in Profinet MRP Main Ring.

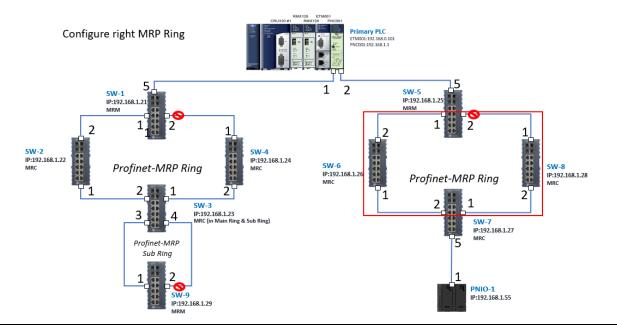
Figure 182: Configuring the Main Ring

In order to enable MRP function in SW1, click the right button and choose **Configure**. It will show "Media Redundancy" on the right window.

Figure 183: Configure SW1

Enable MRP functionality by changing the value of "Media Redundancy" to manager and select **Ring Port 1** to **1**, **Ring Port 2** to **2**.




Figure 184: Configuring the Media Redundancy Parameters

Repeat these steps to enable MRP functionality for SW2, SW3, and SW4.

6.2.6.2 SW5 through SW8

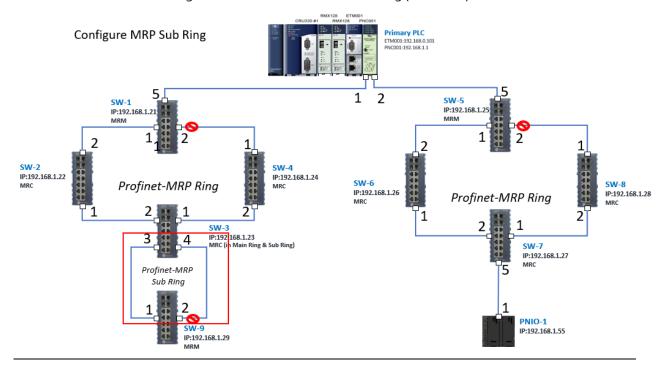
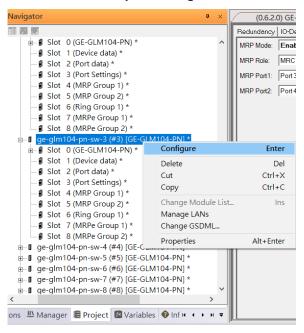
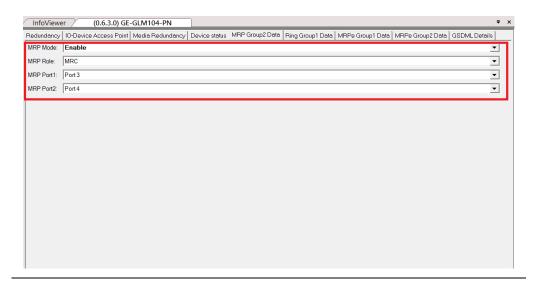

Next, configure the MRP in Profinet MRP Ring-2 (highlighted in the red box below). Refer to the steps outlined in Section 6.2.6.1 to enable MRP functionality for SW5-SW7.

Figure 185: SW5 - SW8



6.2.6.3 SW3 (Ports 3 and 4) and SW9

Next, configure the MRP in Profinet MRP Sub ring (in the box).



In order to enable MRP function in SW3, click the right button and choose **Configure**. It will show "Media Redundancy" on the right window.

Enable MRP function by changing the value of "MRP Group 2 Data" to client and select MRP Port 1 to 3, MRP Port 2 to 4.

Figure 186: SW3 Ports

To enable MRP function in SW9, click the right button and choose **Configure**.

Enable MRP function by changing the value of "Media Redundancy" to client and select Ring Port 1 to 1, Ring Port 2 to 2.

6.2.7 Network Setting

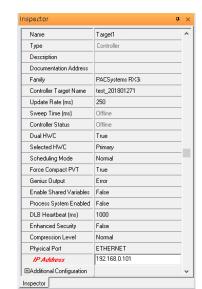
To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.

I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified.
	Click primary or secondary hardware configuration, click the right button, and select Set as Selected HWC .
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

For rule 3, click **Target 1** and Select **Property.**


In the Inspector pane, change the value of Physical Port to Ethernet.

Name Target1 Туре Controller Description Documentation Address PACSystems RX3i Family Controller Target Name test_201801271 Update Rate (ms) 250 Sweep Time (ms) Offline Controller Status Offline Dual HWC True Selected HWC Scheduling Mode Normal Force Compact PVT Genius Output Error Enable Shared Variables False Process System Enabled False DLB Heartbeat (ms) 1000 Enhanced Security Compression Level Normal Physical Port COM1 Inspector Select one of the values in (<Add/Remove COM Port>)

Figure 187: Changing the Physical Port Parameter

Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.

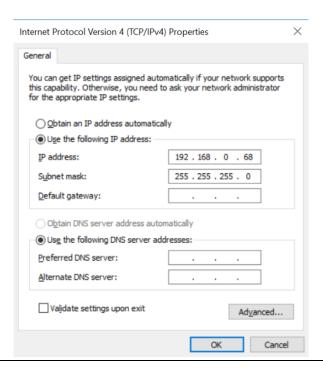


Figure 188: Specified IP Address Appears

6.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 189: Setting the IP Address of the PC with PME

6.2.9 Temporary IP

However, if the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

Settings RS-232 Port (Station Manager) Power Consumption Data Monitor EGD Management Tool

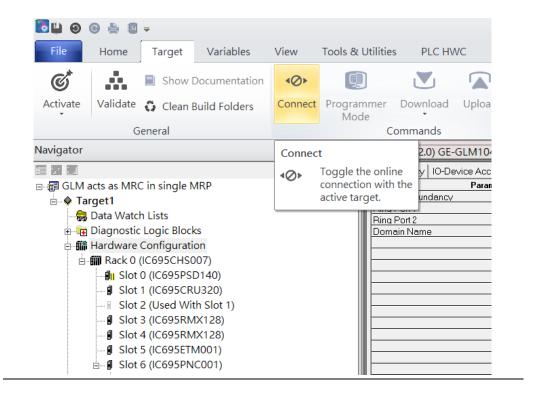

PAC8000 I/O Configuration Tool Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask VersaMotion Servo Configuration Tool Gateway IP Address Name Server IP Address VersaConf Safety Tool Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using hexadecimal notation (six 2-digit pairs). Status Address Redundant IP I/O Scan Set IP Address to Set-Set IP Enter IP address using dotted decimal notation. 0.0.0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Cache button to clear this cache. Clear Cache If your computer has multiple network interfaces, you may pick the one to use Enable interface selection 🥕 ... 🗟 ... 📴 ... 💈 V... 💡 I...

Figure 190: Set Temporary IP Address

6.3 Implementation

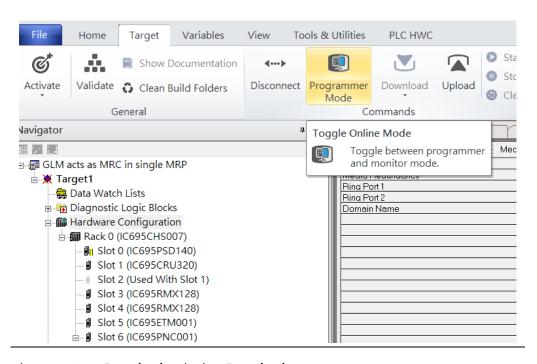

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 191: Connecting to Target

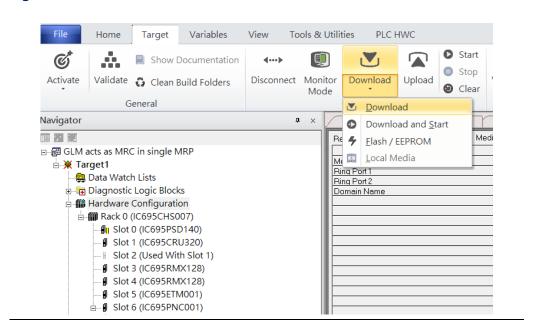

Then press the icon **Programmer Mode.**

Figure 192: Programmer Mode

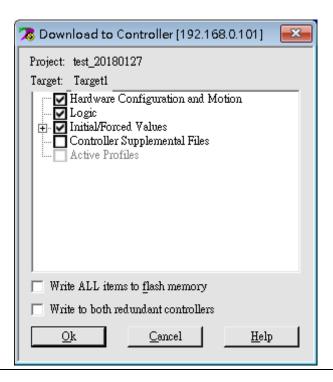

Then press icon **Download** and select **Download**.

Figure 193: Download

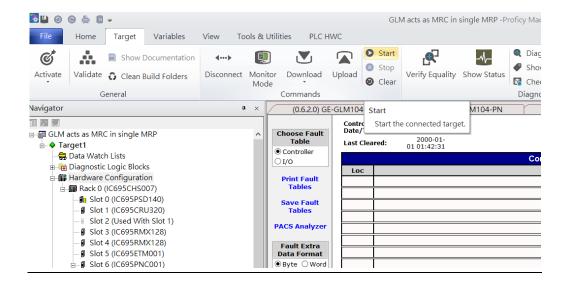

Then the dialogue is appeared to make sure the initialization procedure, select **OK**.

Figure 194: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".

Figure 195: Start

Section 7 PROFINET-MRP Main Ring Coupled with Two PROFINET-MRP Subrings

7.1 Network Topology

Figure 196: PROFINET-MRP Main Ring couples with Coupled Two PROFINET-MRP Subrings

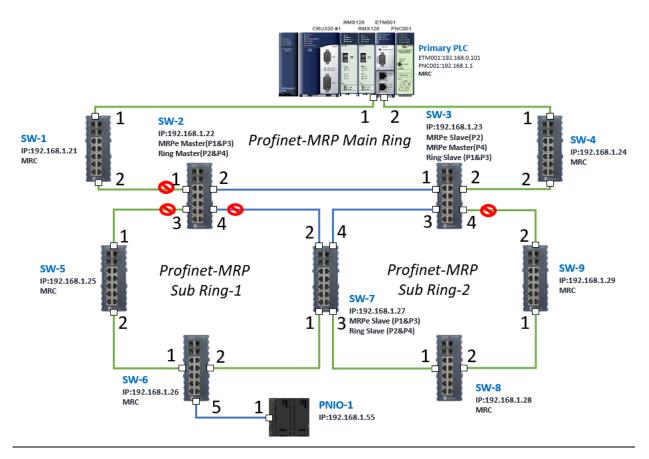


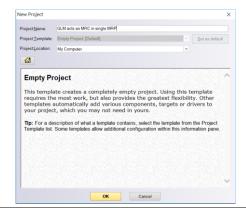
Figure 197

7.2 Hardware Configuration

On the CRU320, the I/O data can be set to "STOP", "RUN OUTPUT DISABLE" or "RUN I/O Enable" states by a switch imbedded on CRU320.

During the configuration, the switches on both 2 CRU320s must be set to "STOP"

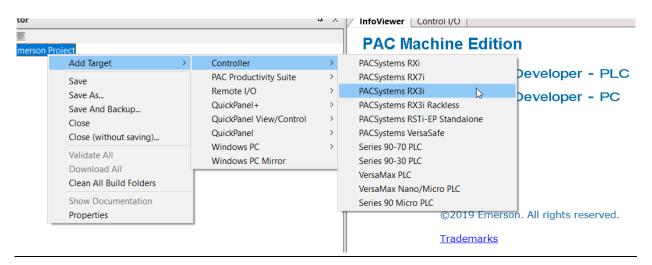
7.2.1 Project Open


To start the software PAC Machine Edition, please follow the steps below:

- 4. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 5. Select the empty project and click **OK**.
- 6. Set the project name and click **OK**.

Figure 198: Create a new project

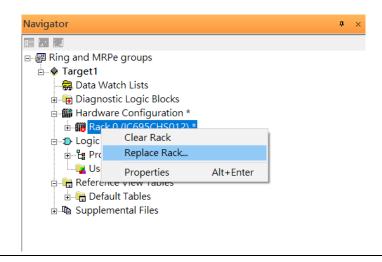
Figure 199: New Project Name


7.2.2 I/O Controller Setting

Next step is to add a target for this project.

Click right button on project name "GLM act as MRC in single MRC group" and select **Add** Target -> Controller -> PACSystems RX3i.

The PACSystems RX3i is the I/O Controller to be tested. See the following picture.


Figure 200: Adding I/O Controller

Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller. However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.


Click right button on Rack 0 (IC695CHS012) and select Replace Rack.

Figure 201: Replace Rack

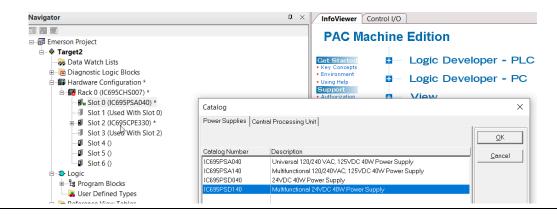
Select "IC695CHS007" and click OK.

Figure 202: Select the Catalog Number

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller

Figure 203: Rack Configuration

From left to right, the installed devices on the I/O Controller are:


Devices on I/O Controller

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index.

First, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PD140, then click **OK**.

Figure 204: Replace Module

Slot 0 is replaced by current power card, PSD140.

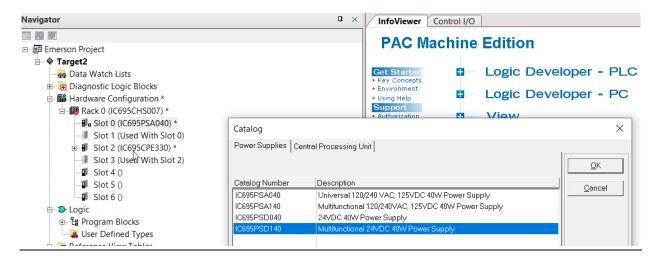

For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1. The slot is not cleared.

Figure 205: Integrate Slot 1 and Slot 2

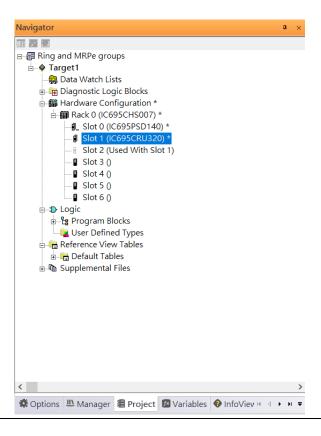
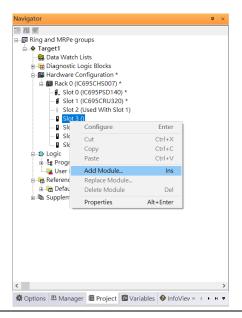

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace Module** to choose CRU320 and select **No.**

Figure 206: Replace Module

Now the CRU320 is specified.

Figure 207: CRU320 is Specified



7.2.2.1 Slot 3

Next is to add RMX128 module for slot 3.

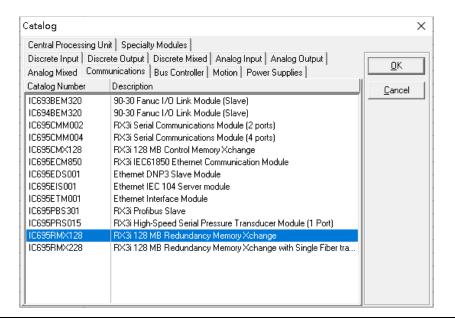

Click the right button on slot 3, select **Add Module.**

Figure 208: Add Module

According to the current installation on the I/O Controller, the RMX128 shall be select. Select **Communications** -> **IC695RMX128** and click **OK**.

Figure 209: RMX128

7.2.2.2 Slot 4

Next, select RMX128 for slot 4.

Click the right button on slot 4, select **Add Module**, select **Communications - IC695RMX128** and click **OK**.

7.2.2.3 Slot 5

Next, select ETM001 for slot 5.

Click the right button on slot 5, select **Add Module**, select **Communications** -> **IC695ETM001** and click **OK**.

It should be note that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and Subnet Mask shall be specified.

In the following picture, the IP address 192.168.0.101 and mask 255.255.255.0 is specified on ETM001.

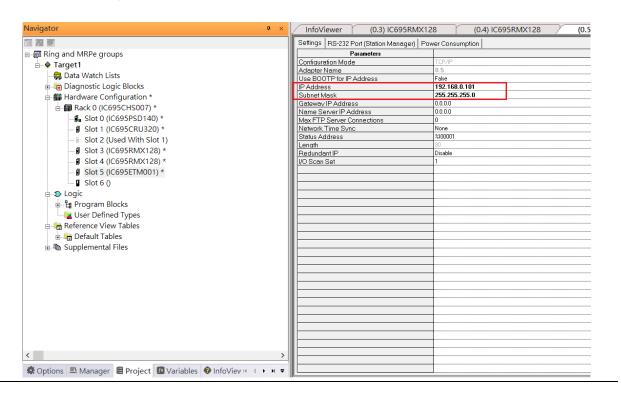
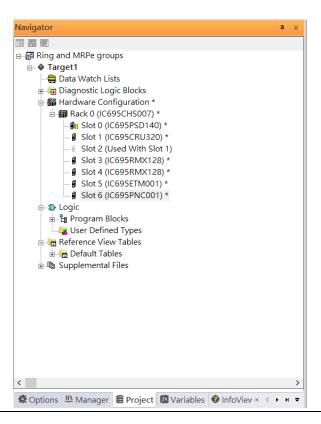


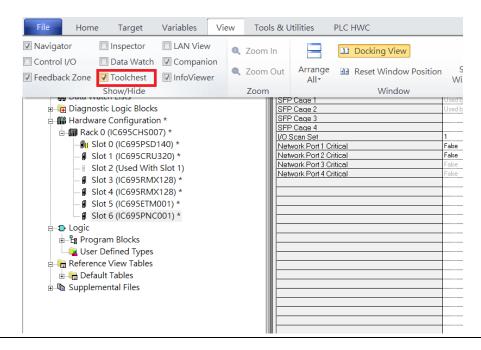
Figure 210: ETM001 Parameters


7.2.2.4 Slot 6

Next, select PNC001 for slot 6.

Click slot 6 and click the right button, select **Add Module**, specify the installed Bus Controller, PNC001 and click **OK**.

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 211: Final Configuration

7.2.3 I/O Device Setting

This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest.**

Figure 212: Location of Toolchest button

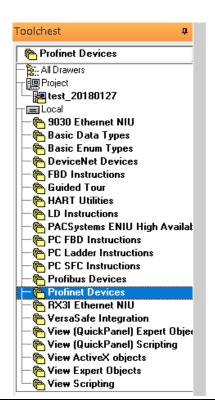

As shown in the following picture, a new interface is created on the right-hand side.

Figure 213: Toolchest Panel

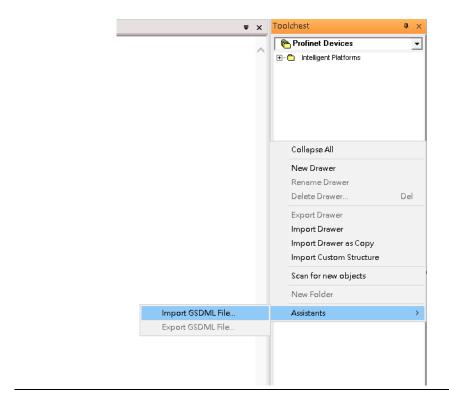

Select Profinet Devices.

Figure 214: Select Profinet Devices from the Toolchest

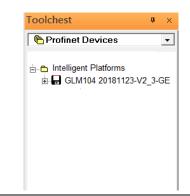

Click right button, select **Assistants -> Import GSDML File** and select the target file.

Figure 215: Select the GSDML File

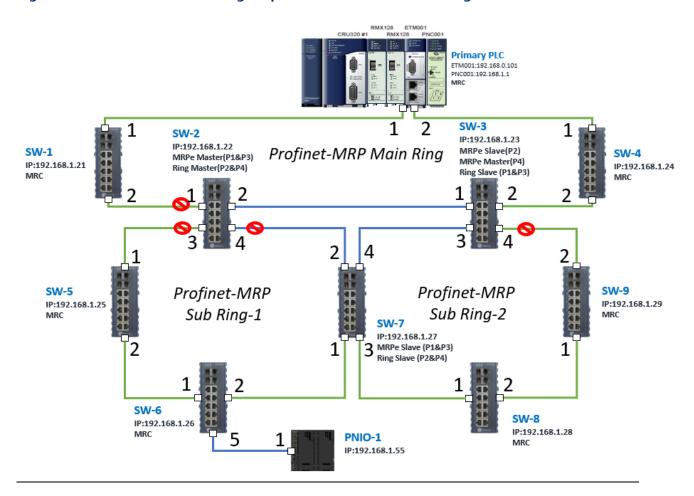

Then the corresponding I/O Device of GSDML File is added in the **Toolchest.**

Figure 216: Imported GSDML File

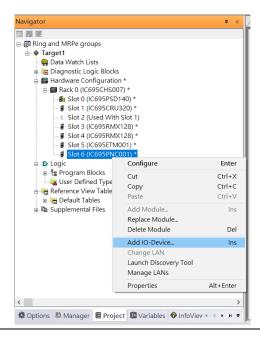
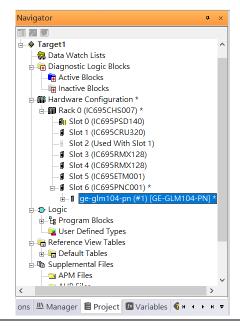

In this document, there are ten I/O devices and one I/O controller. I/O devices are nine switches and one Emerson VersaMax PROFINET I/O Scanner.

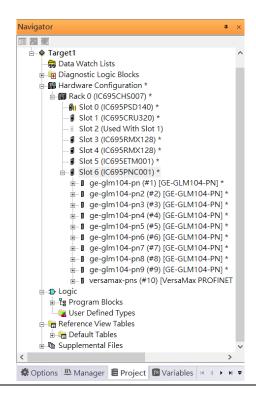
Figure 217: PROFINET-MRP Main Ring Coupled Two PROFINET-MRP Subrings

The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001.


Figure 218: Add I/O Device on the PNC001

Select the specified I/O Service-> GLM0104 20181123-V2_3-GE -> GE-GLM104-PN and click OK.

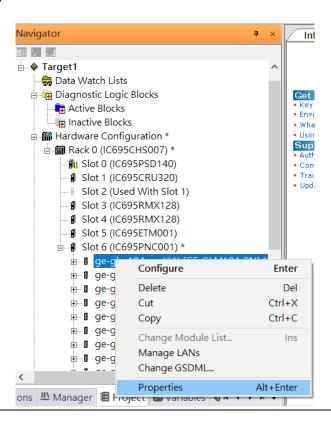
Now the I/O device GLM104(SW1) is ready and is a sub slot on PNC001.


Figure 219: Device is now ready

7.2.3.1 SW2 – SW10

Repeat this process to add the second through the tenth I/O devices to the PNC001. The final results will look like the figure below:

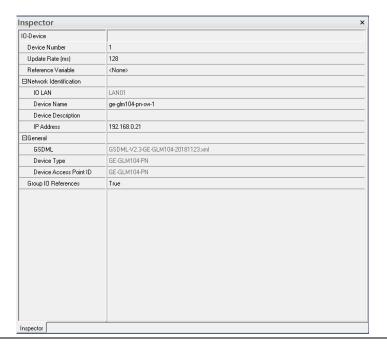
Figure 220: Finished Configuration


7.2.4 DCP Set Command

To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).

Under the slot 6, PNC001, select the I/O Device, ge-glm104-pn, and click the right button.

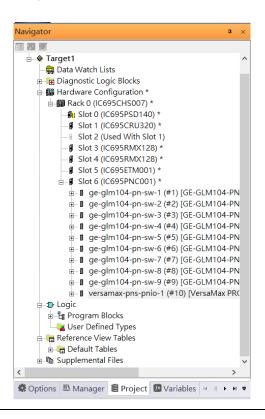
Select Properties.


Figure 221: Properties

In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm104-pn-sw-1" and IP address to "192.168.0.21".

Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm104-pn-sw-1".

Figure 222: Discovery Tool

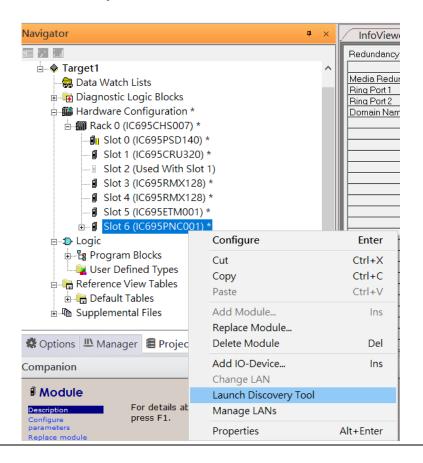

7.2.4.1 GLM104-PN2 through VERSAMAX-PNS-PNIO-1

Repeat this process and for the remaining I/O Devices. Use the table below to define the device name and IP address for each I/O device:

I/O Device	IP Address	Device Name
GLM10-PN	192.168.0.21	ge-glm104-pn-sw-1
GLM10-PN2	192.168.0.22	ge-glm104-pn-sw-2
GLM10-PN3	192.168.0.23	ge-glm104-pn-sw-3
GLM10-PN4	192.168.0.24	ge-glm104-pn-sw-4
GLM10-PN5	192.168.0.25	ge-glm104-pn-sw-5
GLM10-PN6	192.168.0.26	ge-glm104-pn-sw-6
GLM10-PN7	192.168.0.27	ge-glm104-pn-sw-7
GLM10-PN8	192.168.0.28	ge-glm104-pn-sw-8
GLM10-PN9	192.168.0.29	ge-glm104-pn-sw-9
GLM10-PN10	192.168.0.30	ge-glm104-pn-sw-10
VERSAMAX-PNIO	192.168.0.55	versamax-pns-pnio-1

Now all the devices have been changed their device name and IP address like the following picture.

Figure 223: Finished Configuration



7.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool**.

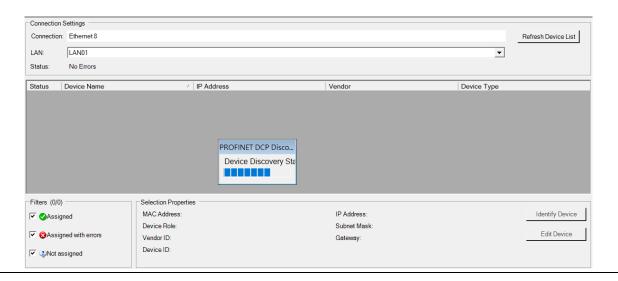

Note: Before we finish downloading the configuration to CRU320, need to unplug the block port according to the hardware topology to avoid loop.

Figure 224: Launch Discovery Tool

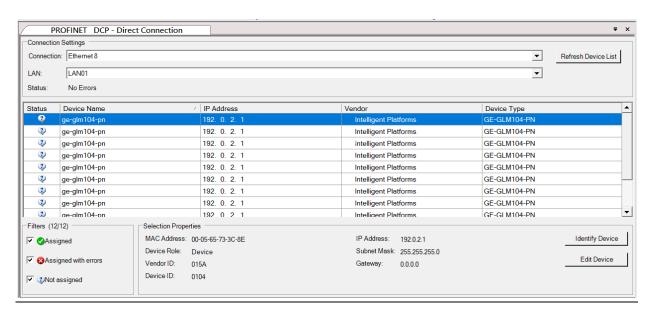
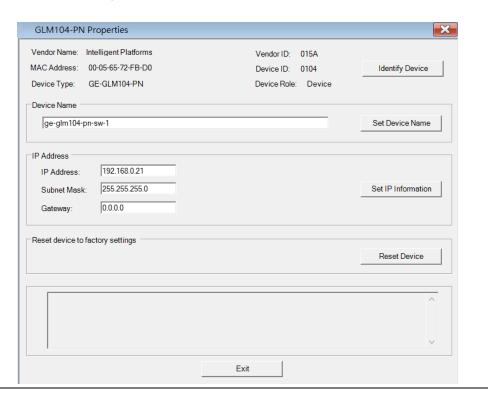

The tool is shown in the following picture, then press **Refresh Device List**.

Figure 225: Refresh Device List

Then the connected I/O Device is listed in the following table.

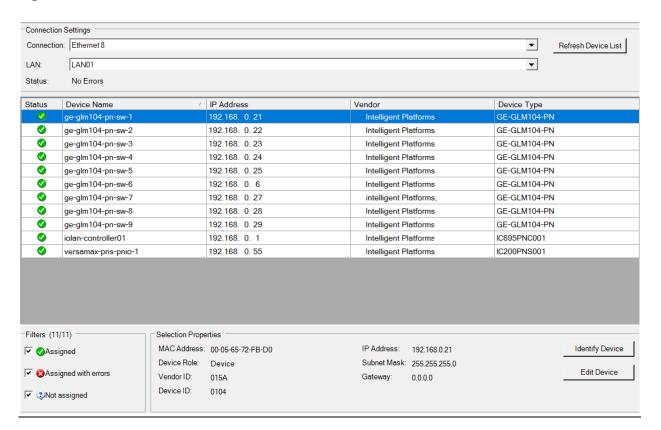

Figure 226: Identify Device

There are I/O Devices and their status are in "Not assigned". We need to change their device name to and IP address. Use **Identify Device** to make sure which device we set according to the hardware topology. Then start to set SW-1 device name and IP address.

Click **Edit Device**, set Device Name to "ge-glm104-pn-sw-1" and click **Set Device Name** button, then set IP Address to "192.168.0.21", Subnet Mask to "255.255.255.0" and click **Set IP Information** button.

Figure 227: Device Properties

Then set SW-2 device name and IP address

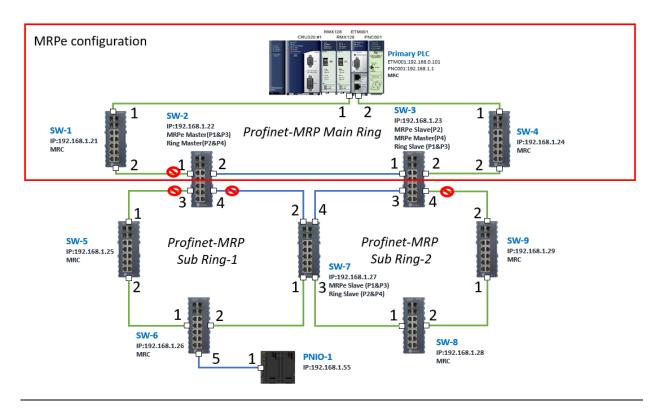

Click **Edit Device**, set Device Name to "ge-glm104-pn-sw-2" and click **Set Device Name** button, then set IP Address to "192.168.0.22", Subnet Mask to "255.255.255.0" and click **Set IP Information** button.

163

Device Name	IP Address	Subnet Mask
ge-glm104-pn-sw-1	192.168.0.21	255.255.255.0
ge-glm104-pn-sw-2	192.168.0.22	255.255.255.0
ge-glm104-pn-sw-3	192.168.0.23	255.255.255.0
ge-glm104-pn-sw-4	192.168.0.24	255.255.255.0
ge-glm104-pn-sw-5	192.168.0.25	255.255.255.0
ge-glm104-pn-sw-6	192.168.0.26	255.255.255.0
ge-glm104-pn-sw-7	192.168.0.27	255.255.255.0
ge-glm104-pn-sw-8	192.168.0.28	255.255.255.0
ge-glm104-pn-sw-9	192.168.0.29	255.255.255.0
ge-glm104-pn-sw-10	192.168.0.30	255.255.255.0
Versamax-PNS-PNIO-1	192.168.0.55	255.255.255.0

After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.

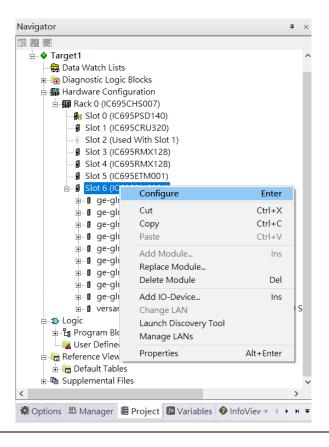
Figure 228: Device Name and IP Address Set


7.2.6 MRP Setting

The steps to enable MRP functionality on the I/O controller and I/O devices will be the same for all components in the figure below. Refer to this section to configure SW1-SW10.

7.2.6.1 Profinet MRP Main Ring

We will be setting MRP for I/O controller and I/O devices highlighted in the red box below. First, configure the MRPe in Profinet MRP Main Ring.


Figure 229: Pofinet MRP Main Ring

In order to enable MRP function in I/O controller, right-click the target and choose **Configure**.

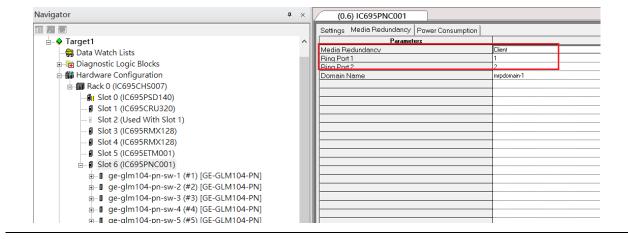

It will show "Media Redundancy" on the right window.

Figure 230: Configure

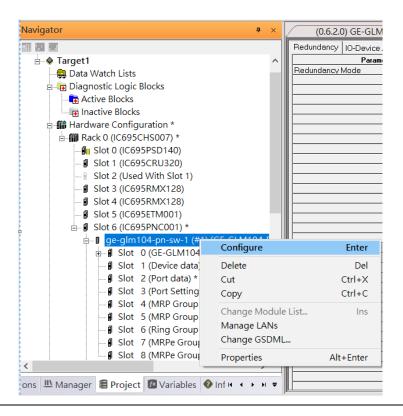

Enable MRP function by changing the value of "Media Redundancy" to client and select **Ring Port 1** to **1**, **Ring Port** to **2**.

Figure 231: Media Redundancy Parameters

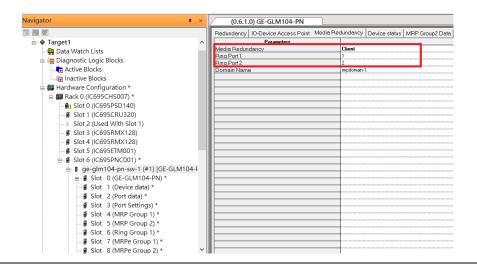

In order to enable MRP function in SW1, click the right button and choose **Configure**. It will show "Media Redundancy" on the right window.

Figure 232: Media Redundancy Parameters

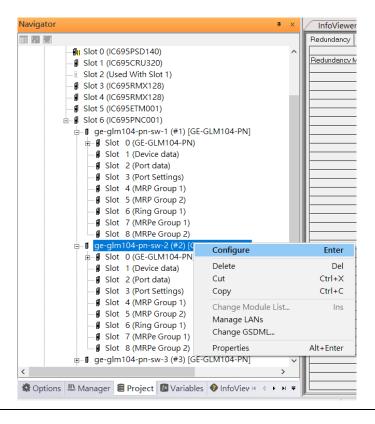

Enable MRP function by changing the value of "Media Redundancy" to manager and select **Ring Port 1** to **1**, **Ring Port** to **2**.

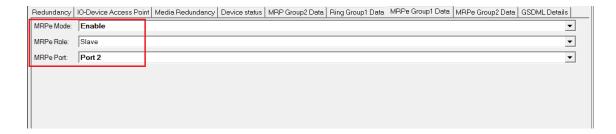
Figure 233: Media Redundancy Parameters

To enable MRPe functions in SW2, click the right button and choose Configure.

Figure 234: MRPe Functionality

Enable MRPe functionality by changing the value of "MRPe Group1 Data" to Master and select MRPe Port to Port 1.

Figure 235: MRPe Functionality



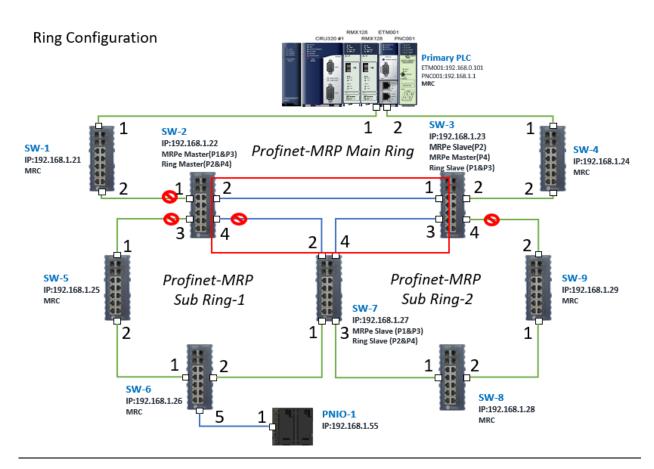
7.2.6.2 SW3

To enable MRPe functions in SW3, click the right button and choose **Configure**.

Enable MRPe function by changing the value of "MRPe Group1 Data" to Slave and select MRPe Port to Port 2.

Figure 236: MRPe Group1 Data

7.2.6.3 SW4


To enable MRP function in SW4, click the right button and choose **Configure**. It will show "Media Redundancy" on the right window.

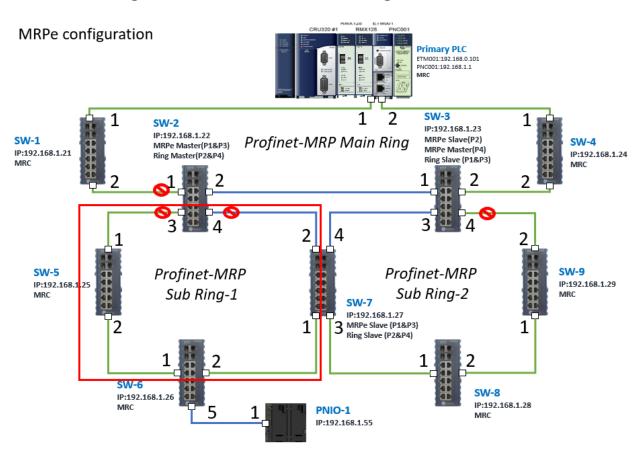
Enable MRP function by changing the value of "Media Redundancy" to client and select Ring Port 1 to 1, Ring Port 2 to 2.

7.2.6.4 Ring in Profinet Main Ring

Next, we configure the Ring in Profinet Main Ring (blue line in the box).

Figure 237: Ring in Profinet Main Ring

7.2.6.4.1 Configuring SW2, SW3, and SW7


To enable Ring functionality for SW2, SW3, and SW7, right-click and choose **Configure.** Enable Ring function by changing the values to match the table below.

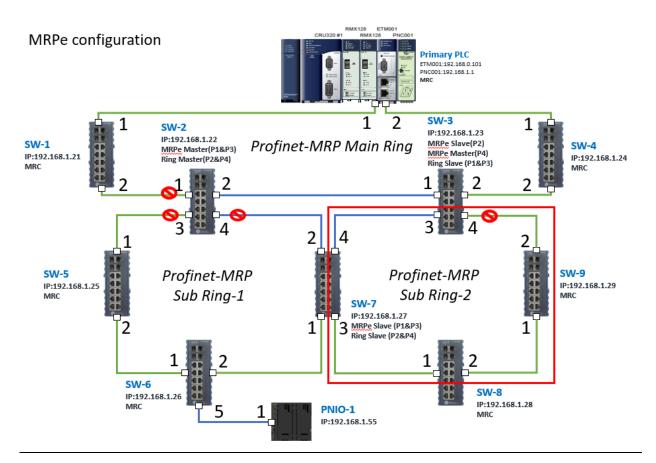
SW Name	Ring Group1 Data	Ring Group Port1	Ring Group Port 2
SW2	Master	Port 2	Port 4
SW3	Slave	Port 1	Port 3
SW7	Slave	Port 2	Port 4

7.2.6.5 MRPe in Profinet MRP Sub Ring-1

Then configure the MRPe in Profinet MRP Sub Ring-1 (green line in the box).

Figure 238: MRPe in Profinet MRP Sub Ring-1

7.2.6.5.1 Configuring SW2, SW5, SW6, and SW7


To enable Ring functionality for SW2, SW3, and SW7, right-click and choose **Configure.** Enable Ring function by changing the values to match the table below.

SW Name	MPRe Group1 Data	MRPe Group2 Data	Ring Group Port1	Ring Group Port 2
SW2	Master	-	Port 3	-
SW5	-	Manager	Port 1	Port 2
SW6	-	Client	Port 1	Port 2
SW7	Slave	-	-	-

7.2.6.6 MRPe in Profinet MRP Sub Ring-2

Next, we configure the MRPe in Profinet MRP Sub Ring-2 (green line in the box).

Figure 239: MRPe in Profinet MRP Sub Ring-2

7.2.6.6.1 Configuring SW7, SW8, and SW9

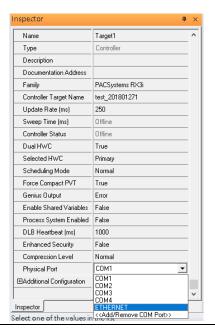
To enable Ring functionality for SW7, SW8, and SW9, right-click and choose **Configure.** Enable Ring function by changing the values to match the table below.

SW Name	Media Redundancy	MPRe Group1 Data	MRPe Group2 Data	MRPe Port	Ring Group Port1	Ring Group Port 2
SW3	-	Master	-	Port 4	-	-
SW7	Client	-	-	-	Port 1	Port 2
SW8	Client	-	-	-	Port 1	Port 2
SW9	Client	-	-	-	Port 1	Port 2

7.2.7 Network Setting

To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.


I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified.
	Click primary or secondary hardware configuration, click the right button, and select Set as Selected HWC.
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

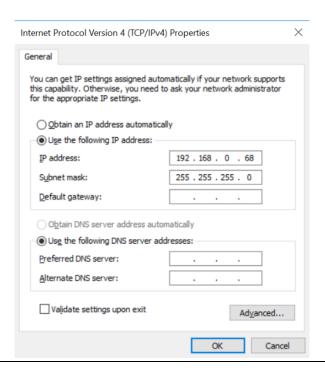
For rule 3, click **Target 1** and Select **Property.**

In the Inspector pane, change the value of Physical Port to Ethernet.


Figure 240: Changing the Physical Port Parameter

Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.


Figure 241: Specified IP Address Appears

7.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 242: Setting the IP Address of the PC with PME

7.2.9 Temporary IP

However, if the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

Settings RS-232 Port (Station Manager) Power Consumption Data Monitor EGD Management Tool

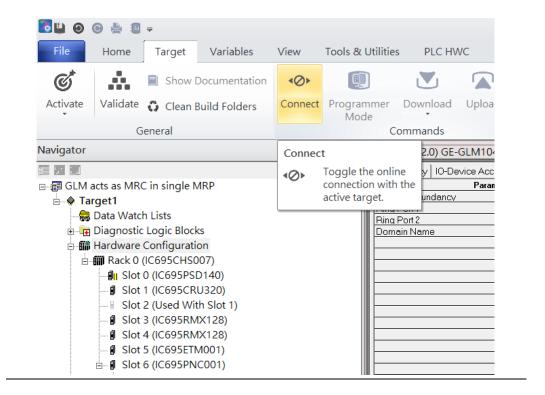

PAC8000 I/O Configuration Tool Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask VersaMotion Servo Configuration Tool Gateway IP Address Name Server IP Address VersaConf Safety Tool Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using hexadecimal notation (six 2-digit pairs). Status Address Redundant IP I/O Scan Set IP Address to Set Set IP Enter IP address using dotted decimal notation. 0 . 0 . 0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Cache button to clear this cache. Clear Cache If your computer has multiple network interfaces, you may pick the one to use Enable interface selection 🥕 ... 📳 ... 🎏 ... 📳 V... 💡 I...

Figure 243: Set Temporary IP Address

7.3 Implementation

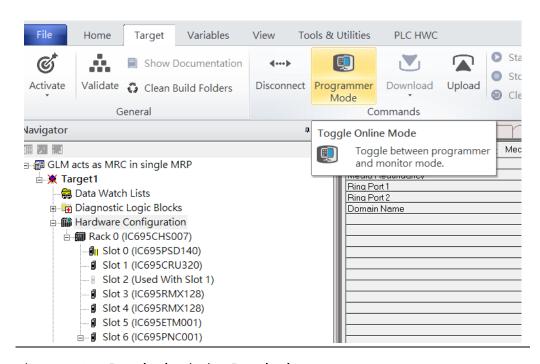

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 244: Connecting to Target

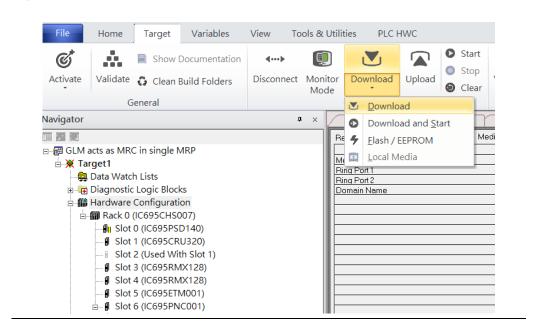

Then press the icon **Programmer Mode**.

Figure 245: Programmer Mode

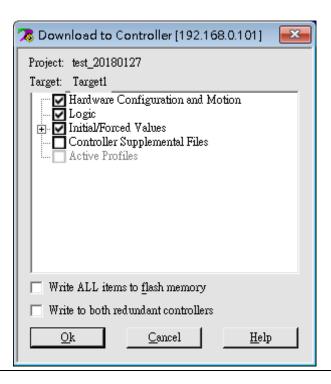

Then press icon **Download** and select **Download**.

Figure 246: Download

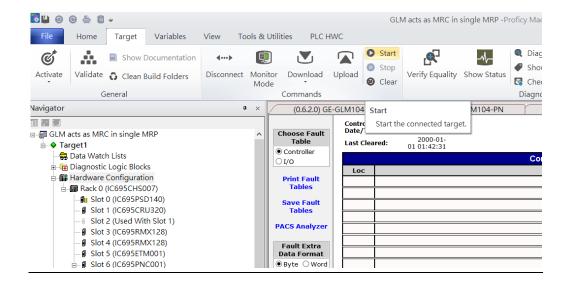
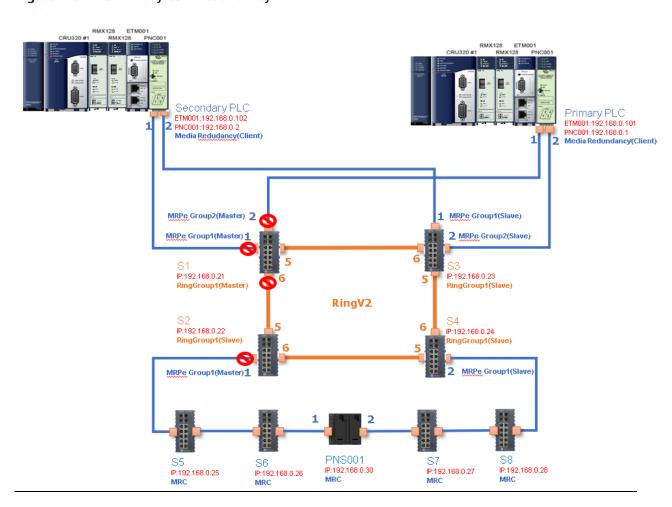

Then the dialogue is appeared to make sure the initialization procedure, select **OK**.

Figure 247: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".


Figure 248: Start

Section 8 PROFINET System Redundancy

8.1 Network Topology

Figure 249: PROFINET System Redundancy

8.2 Hardware Configuration

On the 2 CRU320s, the I/O data can be set to "STOP", "RUN OUTPUT DISABLE" or "RUN I/O Enable" states by a switch imbedded on CRU320. During the configuration, the switches on both 2 CRU320s must be set to "STOP"

8.2.1 Project Open

To start the software PAC Machine Edition, please follow the steps below:

- 1. Click Start -> Emerson -> PAC Machine Edition -> PAC Machine Edition
- 2. Select the empty project and click **OK**.
- 3. Set the project name and click **OK**.

Figure 250: Create a new project

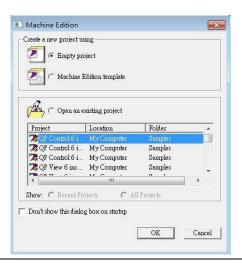
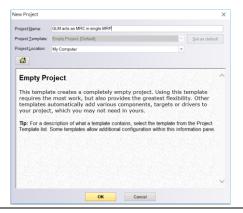
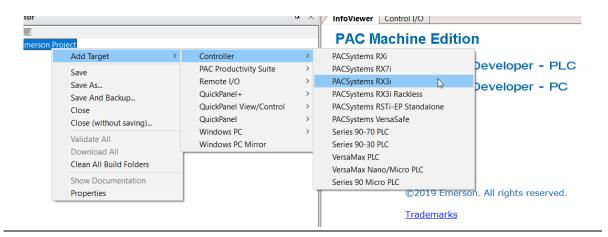



Figure 251: New Project Name

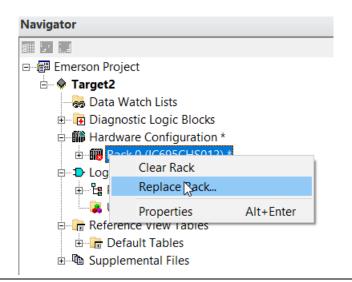

8.2.2 I/O Controller Setting

Next step is to add a target for this project.

Click right button on project name "test_20150127" and select **Add Target** -> **Controller** -> **PACSystems RX3i**.

The PACSystems RX3i is the I/O Controller to be tested. See the following picture.

Figure 252: Adding I/O Controller


Originally the I/O Controller is described as the rack with 12 slots, each slot can be regarded as the chassis for device installation such as power card, communication module, or bus controller.

However, there are only 7 chassis can be used in the I/O Controller CRU320. Thus, replace the rack for 7 slots.

Click right button on "Rack 0 (IC695CHS012)" and select Replace Rack.

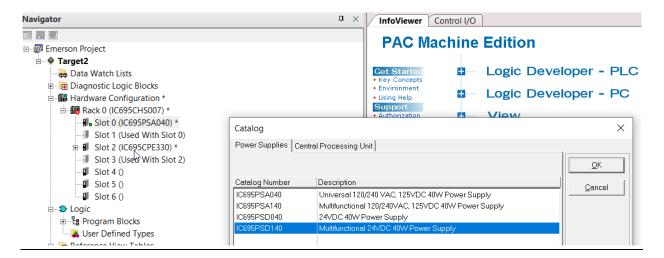
Select "IC695CHS007" and click OK.

Figure 253: Replace Rack

After the rack and the number of slots is defined, select the corresponding devices into the slots according to the I/O Controller. The following picture is the current installation for each device on the I/O Controller

Figure 254: Rack Configuration

From left to right, the installed devices on the I/O Controller are


Devices on I/O Controller

Device Type	Device Name	Chassis index
Power Card	PSD140	0
Central Processing Unit	CRU320	1~2
Communication Module	RMX128	3
Communication Module	RMX128	4
Communication Module	ETM001	5
Bus Controller	PNC001	6

Now, add the module into the slots by the current devices on the I/O Controller, the chassis index is corresponding to the slot index.

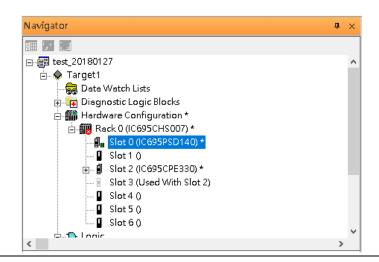

First, replace the power card. Click slot 0 and click the right button, select **Replace Module**, and specify the installed power card, PSD140, then click **OK**.

Figure 255: Replace Module

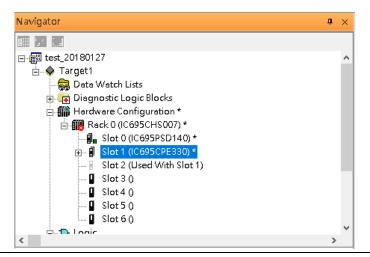

Slot 0 is replaced by current power card, PSD140.

Figure 256: PSD140

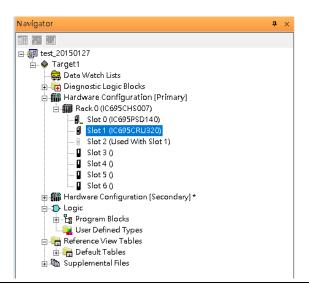

For slot 1 and 2, 2 chassis (1 and 2) is occupied by the Central Processing Unit, CRU320. To integrate slot 1 and 2, pull the slot 2 to slot 1. Slot 2 is now clear.

Figure 257: Integrate Slot 1 and 2

To select the Central Processing Unit, click slot 1 and click the right button, select **Replace Module** to choose CRU320. Now the CRU320 is specified.

Figure 258: CRU320 is Now Specified

Note, for redundancy, the current hardware configuration is defined as **Primary**: Hardware Configuration **Primary**. Therefore, the secondary hardware is created as well.

Figure 259: CRU320 Parameters

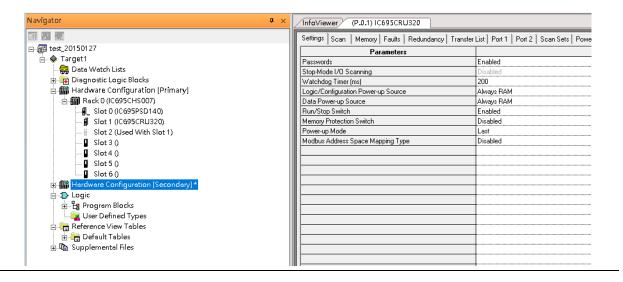
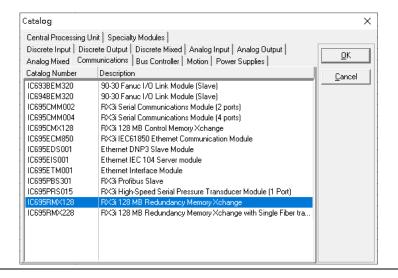


Figure 260

8.2.2.1 Sot 3


Next is to add RMX128 module for slot 3.

Click the right button on slot 3, select Add Module.

According to the current installation on the I/O Controller, the RMX128 shall be select.

Select Communications-> IC695RMX128 and click OK.

Figure 261: Select RMX128

Now the RMX128 is ready on slot 3.

8.2.2.2 Slot 4

Next, select RMX128 for slot 4.

Click the right button on slot 4, select **Add Module**, select **Communications** -> **IC695RMX128** and click **OK**.

8.2.2.3 Slot 5

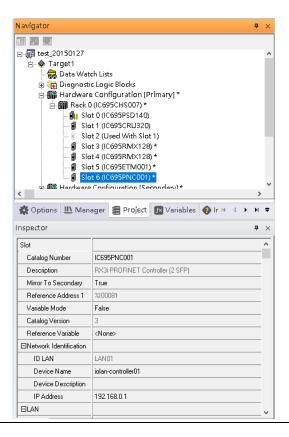
Next, select ETM001 for slot 5.

Click the right button on slot 5, select **Add Module**, select **Communications->** IC695ETM001 and click **OK**.

It should be note that the ETM001 is the management device for PAC Machine Edition. The communication interface is Ethernet network. The IP address and Subnet Mask shall be specified.

In the following picture, the IP address 192.168.0.101 and mask 255.255.255.0 is specified on ETM001.

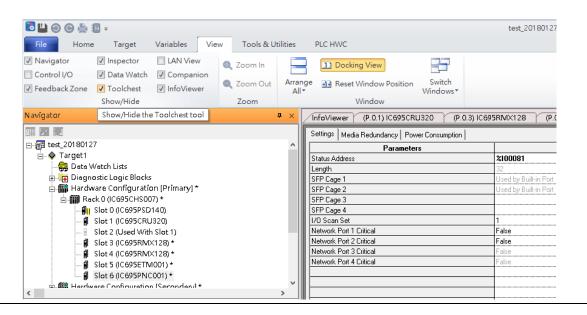
Figure 262: ETM001 Parameters


8.2.2.4 Slot 6

Next, select PNC001 for slot 6.

Click slot 6 and click the right button, select **Add Module**, specify the installed Bus Controller, PNC001 and click **OK.**

Now all the devices on the I/O Controller are ready on the slots on the rack, the following picture is the current status, and we shall save it.


Figure 263: Final Configuration

8.2.3 I/O Device Setting

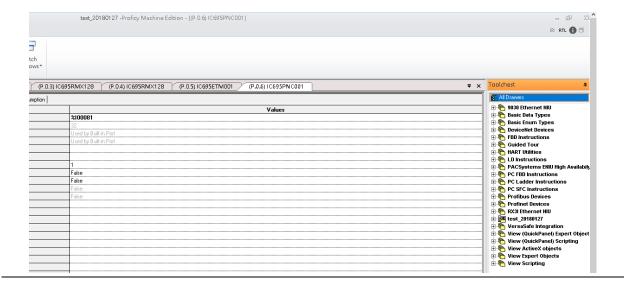

This section introduces the I/O Device integration. To configure the I/O Device, the GSDML file is necessary. Now we create another interface to load the GSDML file by using **Toolchest**.

Figure 264: Toolchest Button Location

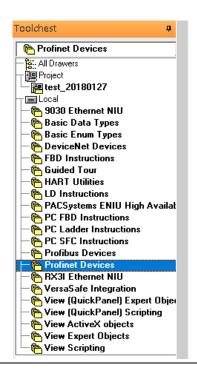

As shown in the following picture, a new interface is created on the right-hand side.

Figure 265: Toolchest Panel

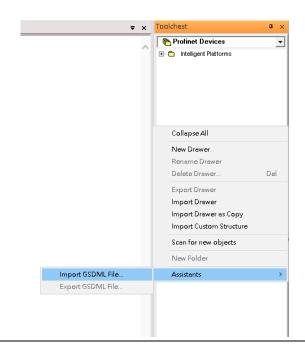

Select Profinet Devices.

Figure 266: Select PROFINET Devices

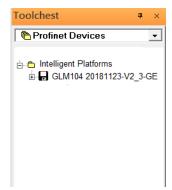
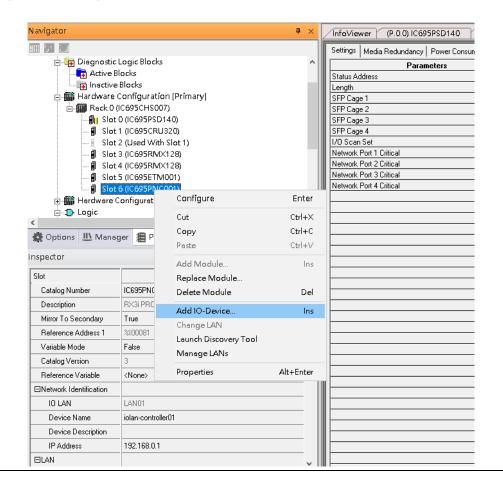
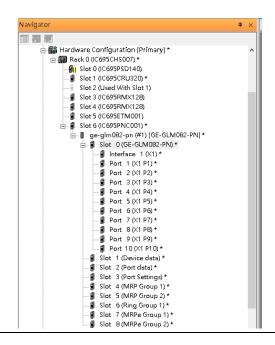

Click right button, select **Assistants** -> Import GSDML File.

Figure 267: Import GSDML File


Select the GSDML File.

Then the corresponding I/O Device of GSDML File is added in the **Toolchest**.

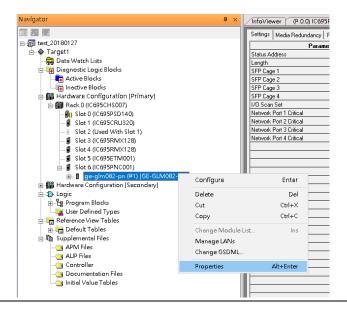
The I/O Device is connected to the Bus Controller on the I/O Controller. Click the slot 6 and click the right button to add the I/O Device on the PNC001


Figure 268: Add I/O Device

Select the specified I/O Service **GLM082 20181123-V2_3-GE** -> **GE-GLM082-PN** and click **OK**.

Now the I/O device GLM082 is ready and is a sub slot on PNC001.

Figure 269: GLM082 is Now Configured



8.2.4 DCP Set Command

To configure the setting or monitor the status on the I/O Device, the communication interface is also based on Ethernet network. We can specify the IP address and the device name from I/O Controller via the DCP (Discovery and Configuration Protocol).

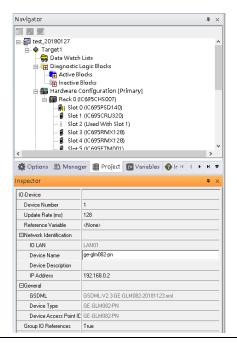

Under the slot 6, PNC001, select the I/O Device, GLM082, and click the right button.

Figure 270: Properties

Select **Properties**, see the following picture.

Figure 271: Inspector Panel

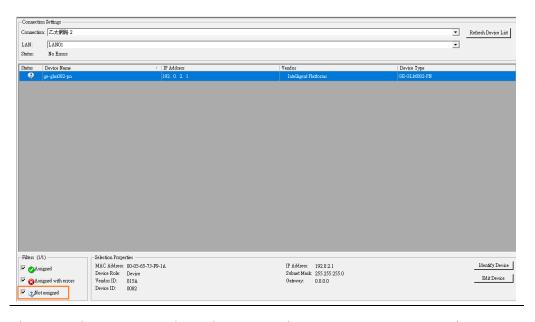
In this table, the I/O Device name can be specified in field **Device Name**, and the IP address can be set in field **IP address**. We modify device name to "ge-glm082-pn-02" then we use I/O Device Discovery Tool to observed an I/O Device and set I/O Device's name to "ge-glm082-pn-02" later.

It should be noted that, both the **Properties** of I/O Device shall be synchronized between **Primary** and **Secondary** hardware configuration. The DCP setting will be effective when all the configurations are downloaded to the hardware from **Primary** hardware configuration.

8.2.5 I/O Device Scan

The PAC Machine Edition also supports the function to scan the connected I/O Devices. First the observed I/O Device shall be connected to the ETM001 on the **Primary** hardware configuration, then using the function **Launch Discovery Tool**.

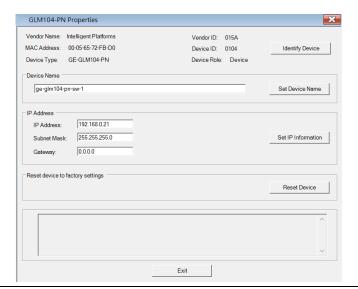
Navigator InfoViewer (P.0.0) IC695PSD140 (P.0.1) IC695CRU320 Settings | Media Redundancy | Power Consumption | Slot 1 (IC695CRU320) Parameters Slot 2 (Used With Slot 1) %100081 Status Address ■ Slot 3 (IC695RMX128) Length ¶ Slot 4 (IC695RMX128) SFP Cage 1 ■ Slot 5 (IC695ETM001) SFP Cage 2 SFP Cage 3 Configure Enter SFP Cage 4 ₫ ge-glm082 🛨 🌃 Hardware Configurati I/O Scan Set Cut Ctrl+X Network Port 1 Critical ⊨ 1 Logic Сору Ctrl+C Program Blocks Network Port 2 Critical False Ctrl+V 🚂 User Defined Type Network Port 3 Critical Network Port 4 Critical 🛓 🐂 Reference View Table Add Module.. Ins ⊕ 🕞 Default Tables Replace Module. Delete Module Del 🔅 Options 😃 Manager 📳 PI Add IO-Device Ins Change LAN Inspector Launch Discovery Tool Slot Manage LANs Catalog Number IC695PNC Properties Alt+Enter RX3i PRO Description Mirror To Secondary Reference Address 1 %100081 Variable Mode False Catalog Version


Figure 272: Launch Discovery Tool

The tool is shown in the following picture, then press **Refresh Device List**.

Then the connected I/O Device is listed in the following table.

196


Figure 273: Unassigned Device

There is an I/O Device named "ge-glm082-pn" whose status is in "Not assigned". We need to change its device name to **ge-glm082-pn-02** and IP address to **192.168.0.2** as previous configuration in Figure 37.

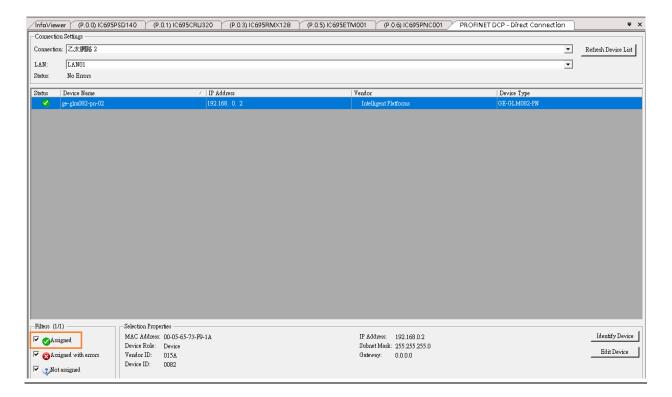

Click **Edit Device**, set Device Name to "ge-glm082-pn-02" and click **Set Device Name** button, then set IP Address to "192.168.0.2", Subnet Mask to "255.255.255.0" and click **Set IP Information** button.

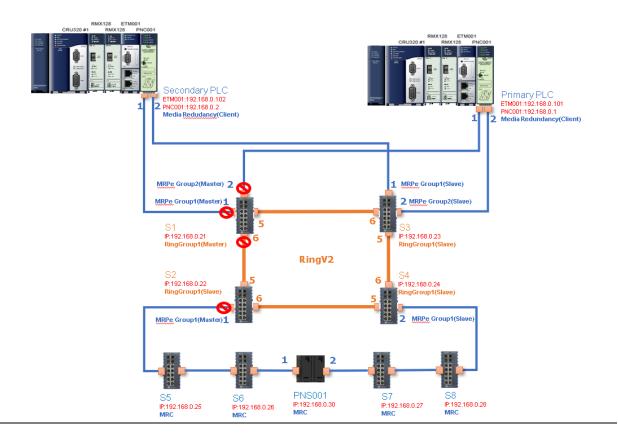
Figure 274: GLM082-PN Properties

After assigning Device Name and IP Address correctly, the Status will be in "Assigned" status.

Figure 275: Status "Assigned"

8.2.6 MRP Setting

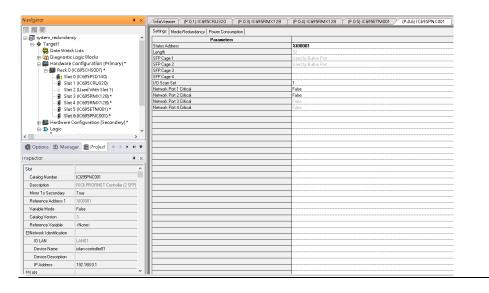
This example will show how to use RingV2 and MRPe to setup the network topology which can support system redundancy and media redundancy.

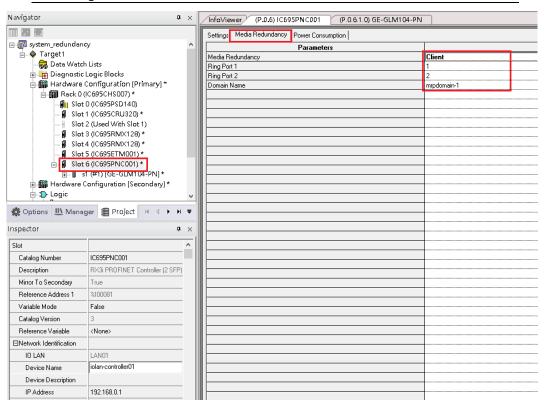

In this network topology shown in the figure below, switch port 5,6 of Switch S1, S2, S3 and S4 will use RingV2 to protect the link in the ring. Switch S1 runs as RingV2 Master role, Switch S2, S3 and S4 runs as RingV2 Slave role. In normal state, Master will block one of its ring ports for preventing broadcast storm in the ring. If anyone link between these 4 switches is failure, Master will set this blocked port to forward state, so the traffic will resume soon.

Switch port 2 of Switch S1 and S3 connect to Primary PLC by using MRPe to protect the links. In this link, Primary PLC runs as MRC, MRPe Group2(Master) will manage port 2 of Switch S1. MRPe Group2(Master) will set port2 of Switch S1 to blocked in Normal state. If MRPe Group2(Master) detects link-failure, it will set port2 of Switch S1 to forwarded.

Switch port 1 of Switch S1 and S3 connect to Secondary PLC by using MRPe to protect the links. MRPe Group1(Master) will manage port 1 of Switch S1. MRPe Group1(Master) will set port1 of Switch S1 to blocked in Normal state. If MRPe Group1(Master) detects linkfailure, it will set port1 of Switch S1 to forwarded.

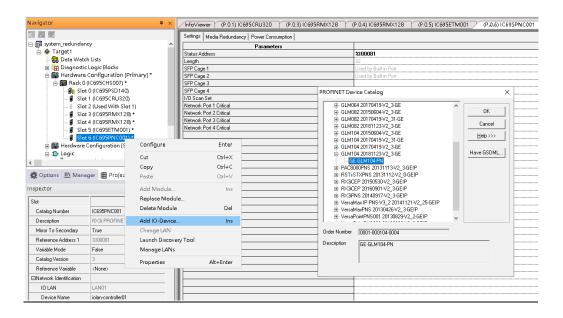
Switch port 1 of Switch S2 and Switch port 2 of Switch S4 connect to 5 MRC Devices by using MRPe to protect the links. MRPe Group1(Master) will manage port 1 of Switch S2. MRPe Group1(Master) will set port1 of Switch S2 to blocked in Normal state. If MRPe Group1(Master) detects link-failure, it will set port1 of Switch S2 to forwarded.


Figure 276: Network Topology


Follow the procedures to complete the configuration of the network:

1. Create PME project and add needed modules.

Figure 277: Create PME Project



2. Config PNC001 to run as MRC

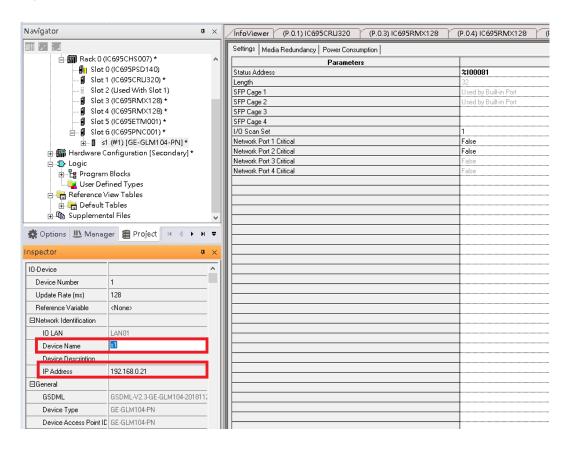
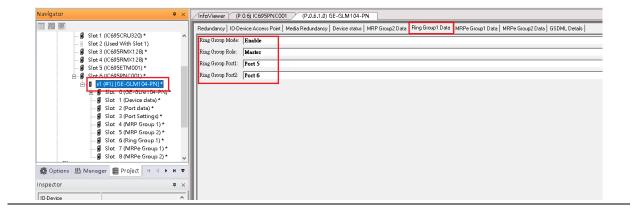

3. Add Switch S1

Figure 278: Add Switch S1

4. Set Switch S1 device name and IP address.

Figure 279: Set Switch S1 Device Name and IP Address

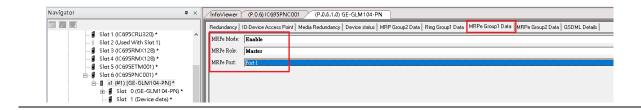


5. Config Switch S1 to run RingV2 and MRPe.

Set Switch S1 to run RingV2 Master Role:

In Ring Group1 Date, set: Ring Group Mode: Enable Ring Group Role: Master Ring Group Port1: Port5 Ring Group Port2: Port6

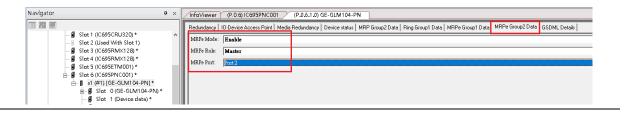
Figure 280: Ring Group1 Data



6. Set Switch S1 port1 and port2 to run MRPe Master

In MRPe Group1 Date, set:

MRPe Mode: Enable MRPe Role: Master MRPe port: Port1


Figure 281: MRPe Group1 Date

7. In MRPe Group 2 Date, set:

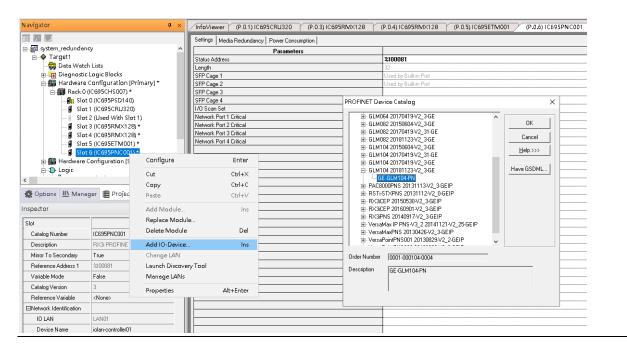

MRPe Mode: Enable MRPe Role: Master MRPe port: Port2

Figure 282: MRPe Group2 Date

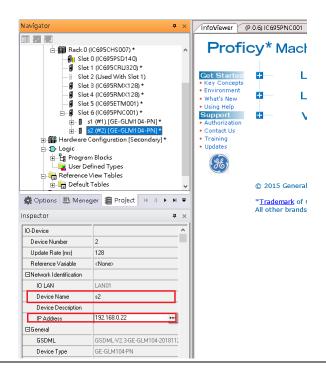

8. Add Switch S2

Figure 283: Add I/O Device

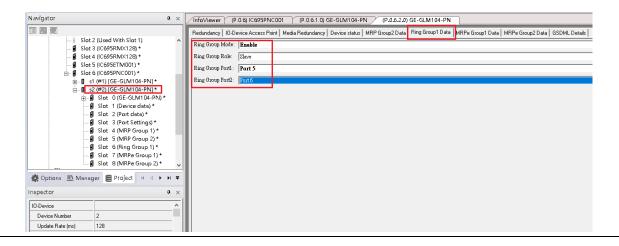
9. Set Switch S2 device name and IP address

Figure 284: Switch S2 Device Name and IP Address

10. Config Switch S2 to run RingV2 and MRPe.

Set Switch S2 to run RingV2 Slave Role

In **Ring Group1 Date**, set:

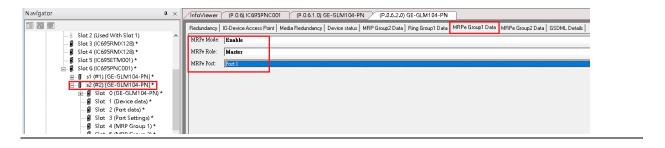

Ring Group Mode: Enable

Ring Group Role: Slave

Ring Group Port1: Port5

Ring Group Port2: Port6

Figure 285: Ring Group1 Data



11. Set Switch S2 Port1 to run MRPe Master

In MRPe Group1 Date, set:

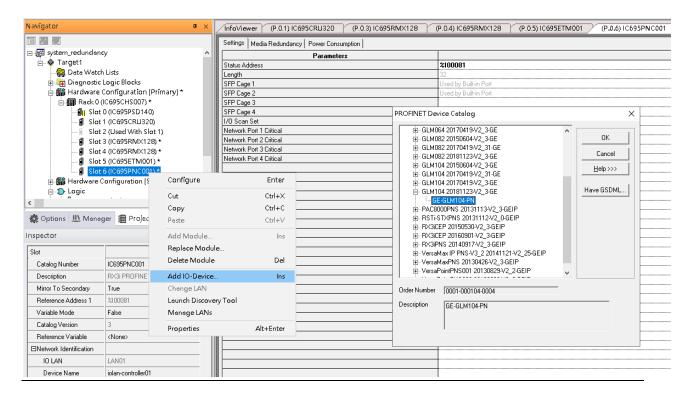

MRPe Mode: Enable MRPe Role: Master MRPe port: Port1

Figure 286: Switch SW Port1 to MRPe Master

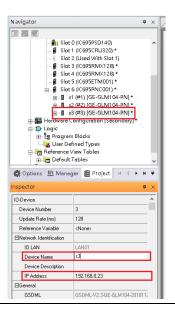
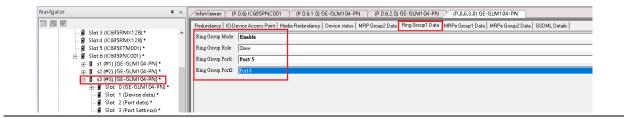

12. Add Switch S3

Figure 287: Add Switch S3

13. Set Switch S3 Device Name and IP Address

Figure 288: Set Switch S3 Device Name and IP Address

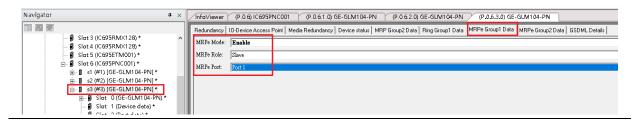


14. Config Switch S3 to run RingV2 and MRPe.

Set Switch S3 to run RingV2 Slave Role:

In Ring Group1 Date, set: Ring Group Mode: Enable Ring Group Role: Slave Ring Group Port1: Port5 Ring Group Port2: Port6

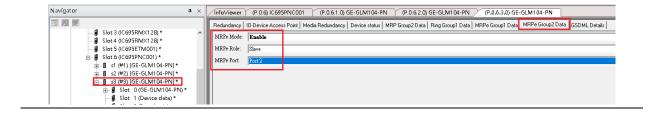
Figure 289: Switch S3 to RingV2 and MRPe


206

15. Set Switch S3 port1 and port2 to run MRPe Slave

In MRPe Group1 Date, set:

MRPe Mode: Enable MRPe Role: Slave MRPe port: Port1


Figure 290: Switch S3 Port1 and Port2

16. In MRPe Group 2 Date, set:

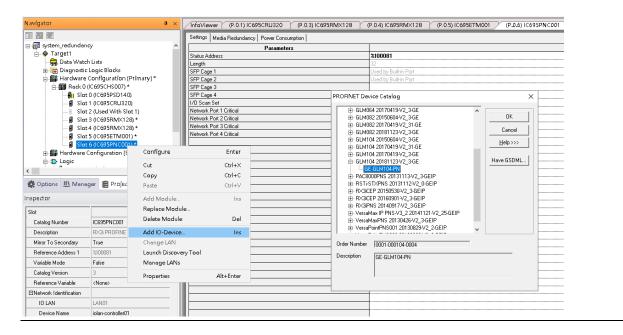

MRPe Mode: Enable MRPe Role: Master MRPe port: Port2

Figure 291: MRPe Group2 Date

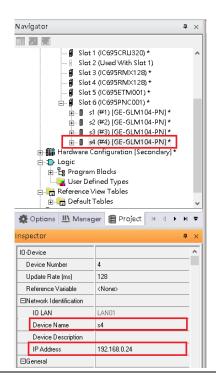
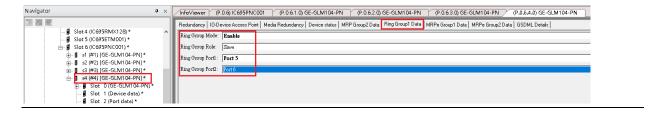

17. Add Switch S4

Figure 292: Add Switch S4

18. Set Switch S4 device name and IP address.

Figure 293: S4 Device Name and IP Address

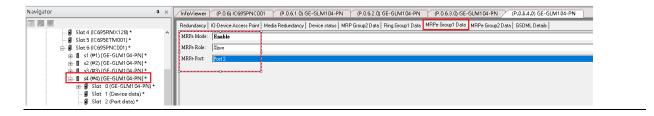


19. Config Switch S4 to run RingV2 and MRPe.

Set Switch S4 to run RingV2 Slave Role

In Ring Group1 Date, set: Ring Group Mode: Enable Ring Group Role: Slave Ring Group Port1: Port5 Ring Group Port2: Port6

Figure 294: Switch S4 to RingV2 and MRPe



20. Step17: Set Switch S4 port2 to run MRPe Slave

In MRPe Group1 Date, set:

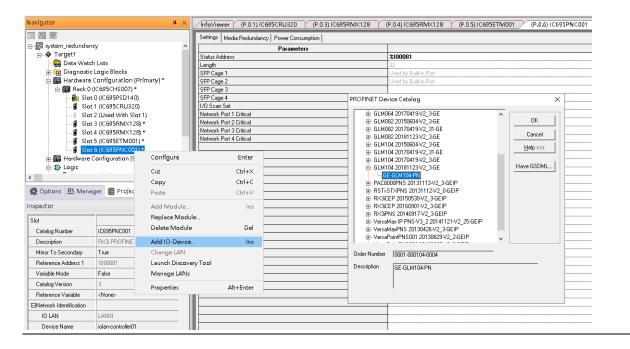

MRPe Mode: Enable MRPe Role: Slave MRPe port: Port2

Figure 295: Swtich S4 Port2 to Run MRPe Slave

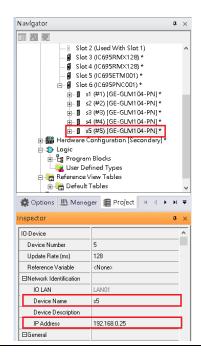

21. Add Switch S5

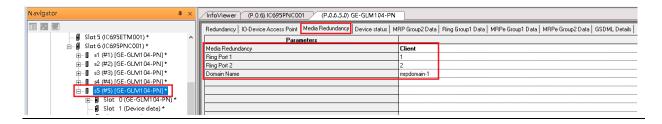
Figure 296: Switch S5

22. Set Switch S5 device name and IP address.

Figure 297: Switch S5 Device Name and IP Address

23. Config Switch S5 to run MRC.

Set Switch S5 to run MRC


In Media Redundancy, set:

Media Redundancy: Client

Ring Port 1: 1 Ring Port 2: 2

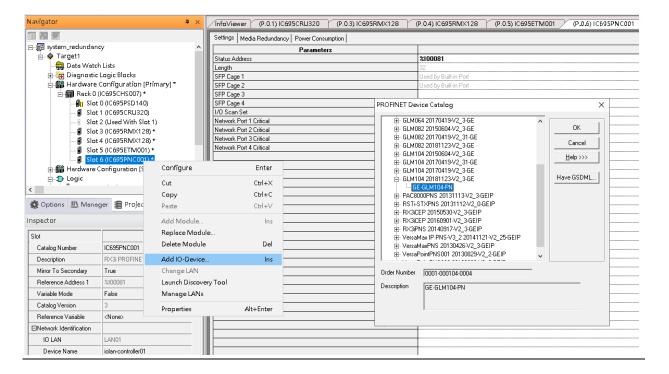

Domain Name: mrpdomain-1

Figure 298: Switch S5 to Run MRC

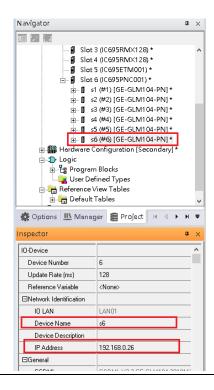

24. Add Switch S6

Figure 299: Switch S6

25. Set Switch S6 device name and IP Address.

Figure 300: Switch S6 Device Name and IP Address

26. Config Switch S6 to run MRC.

Set Switch S6 to run MRC

In Media Redundancy, set:

Media Redundancy: Client

Ring Port 1:1

Ring Port 2: 2

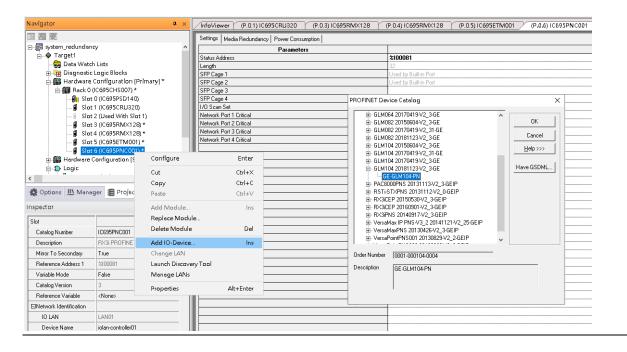

Domain Name: mrpdomain-1

Figure 301: Config Switch S6 to Run MRC

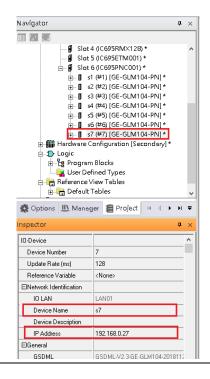

26. Add Switch S7

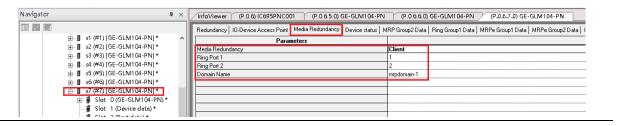
Figure 302: Add Switch S7

27. Set Switch S7 device name and IP address

Figure 303: Switch S7 Device Name and IP Address

28. Config Switch S7 to run MRC.

Set Switch S7 to run MRC


In Media Redundancy, set:

Media Redundancy: Client

Ring Port 1: 1 Ring Port 2: 2

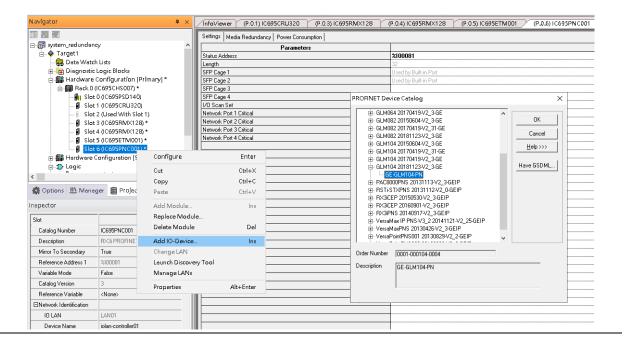

Domain Name: mrpdomain-1

Figure 304: Switch S7 to run MRC

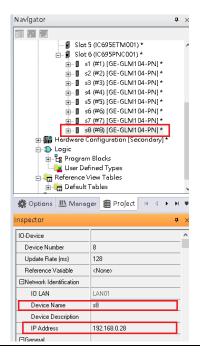

29. Add Switch S8

Figure 305: Add Switch S8

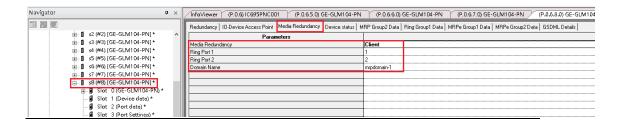
30. Set Switch S8 device name and IP address.

Figure 306: Switch S8 Device Name and IP Address

31. Config Switch S8 to run MRC.

Set Switch S8 to run MRC

In Media Redundancy, set


Media Redundancy: Client

Ring Port 1: 1

Ring Port 2: 2

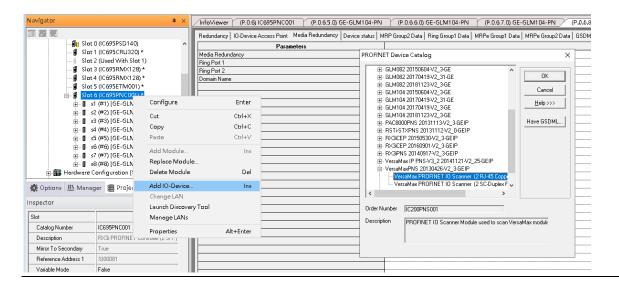
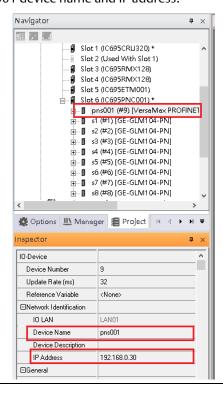

Domain Name: mrpdomain-1

Figure 307: Switch S8 to run MRC



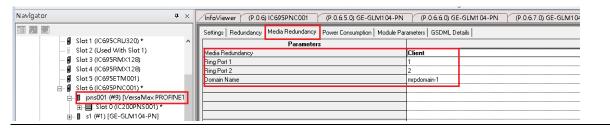
32. Add IO-Device PNS001

Figure 308: Add I/O Device PNS001

33. Set Switch PNS001 device name and IP address:

34. Config Switch PNS001 to run MRC.

Set Switch PNS001 to run MRC


In Media Redundancy, set:

Media Redundancy: Client

Ring Port 1: 1 Ring Port 2: 2

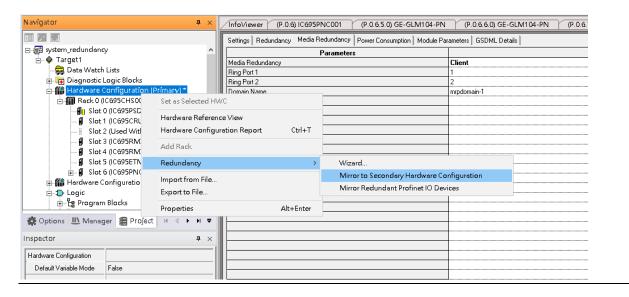
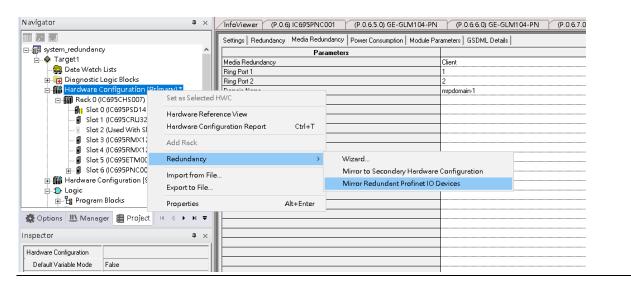

Domain Name: mrpdomain-1

Figure 309: Switch PNS001 to run MRC



35. Mirror configuration to Secondary PLC

Figure 310: Secondary PLC

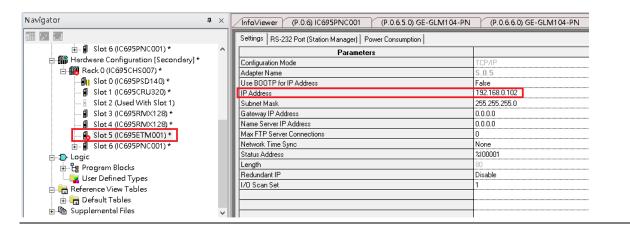


Figure 311: Mirror Redundant Profinet IO Devices

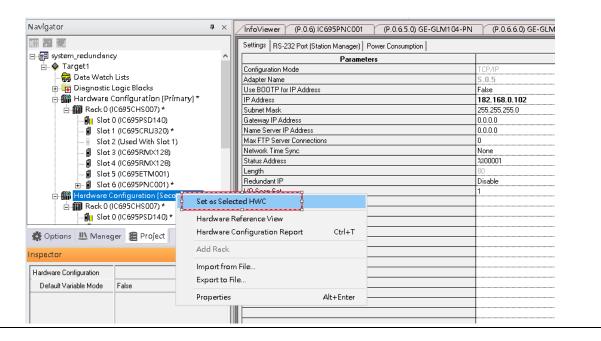

36. Set ETM001 IP Address of Secondary PLC to 192.168.0.102

Figure 312: Setting IP Address of Secondary PLC

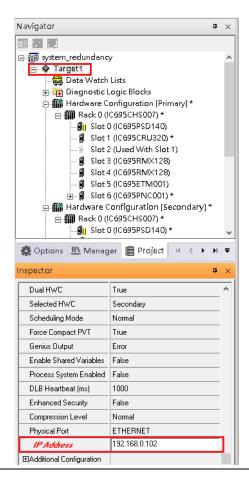
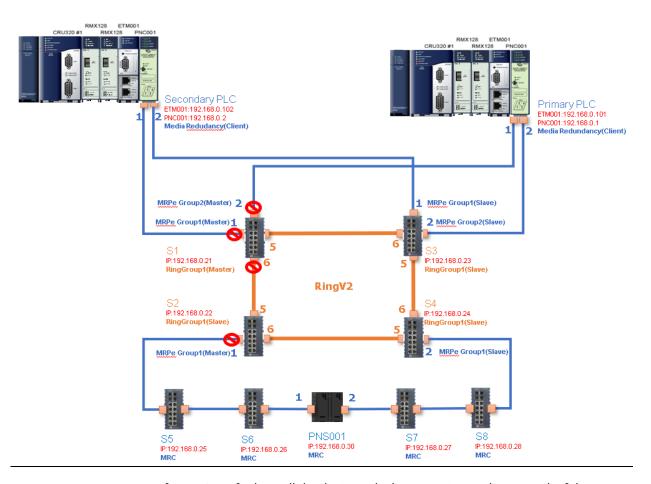

37. Set Secondary PLC as HWC

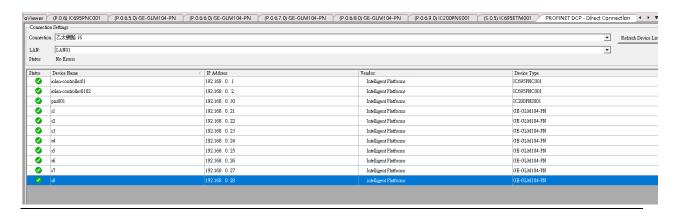
Figure 313: Set Secondary PLC as Hardware Configuration

38. Double click **Target1**, and set IP Address to 192.168.0.102.


Figure 314: Set IP Address of Target1

Before use Profinet DCP or Download configuration to PLC, make sure to remove following ethernet cable for preventing broadcast storm in the network.

- Port1 of Switch S3
- Port2 of Switch S3
- Port6 of Switch S3
- Port2 of Switch S4


Figure 315: Configuring RingV2

Use Profinet DCP to find out all the devices which connecting to the network. If the Device Name or IP Address is not the same as configuration, please set them to correct Device Name and IP Address.

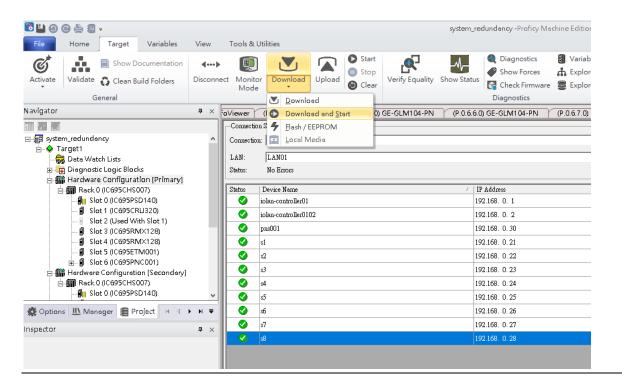

After correct setting, all the devices when into "Assigned" state.

Figure 316: Assigned Devices

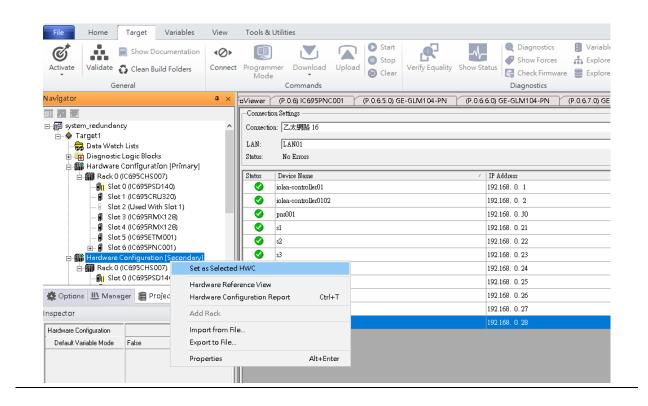

39. Download and Start for Primary PLC

Figure 317: Download and Start Primary PLC

40. Set Secondary PLC to HWC

Figure 318: Secondary PLC to Hardware Configuration

41. Download and Start for Secondary PLC

Figure 319: Download and Start Secondary PLC

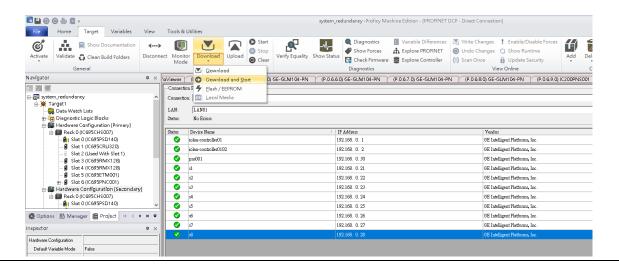
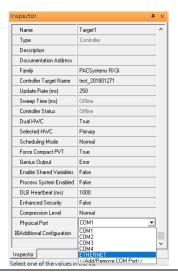


Figure 320

8.2.7 Network Setting

To establish the communication to the I/O Controller from PAC Machine Edition, the interface of I/O Controller shall be specified.

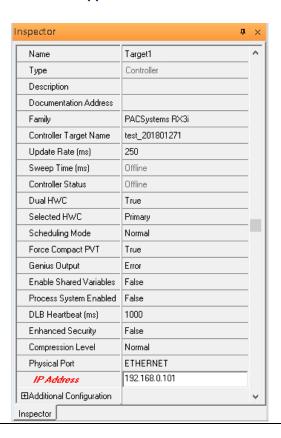
It should be noted that there is only 1 I/O Controller (Primary or Secondary) is able to communicate with PAC Machine Edition. Therefore, there are 3 rules of communication are defined.


I/O Controller Communication Rule

Rule	Description
1	The communicated I/O Controller shall be specified.
	Click primary or secondary hardware configuration, click the right button, and select Set as Selected HWC .
2	During the communication, the cable shall be connected to the ETM001 in specified hardware (Primary or Secondary)
3	Specify the interface and IP address for communicated I/O Controller

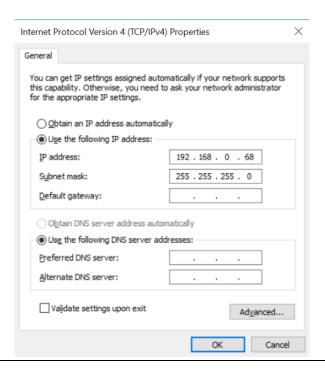
For rule 3, click **Target 1** and Select **Property.**

In the Inspector pane, change the value of Physical Port to Ethernet.


Figure 321: Changing the Physical Port Parameter

Also, the IP address of communicated I/O Controller shall be set. Here the **Primary** setting is shown.

Note, the specified IP address is set as the IP address on ETM001.


Figure 322: Specified IP Address Appears

8.2.8 PC Network

The IP address of PC with PAC Machine Edition shall be set in the same network area.

Figure 323: Setting the IP Address of the PC with PME

8.2.9 Temporary IP

However, if the IP address of ETM001 is lost or forgotten, the IP address can be changed by the function **Set Temporary IP Address** according to the MAC address of ETM001. In the following figure, the MAC address is referenced to the ETM001, and the IP address can be defined by user.

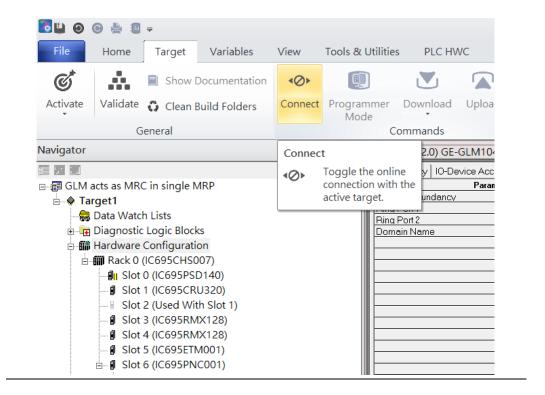

Settings RS-232 Port (Station Manager) Power Consumption Data Monitor EGD Management Tool
PAC8000 I/O Configuration Tool Configuration Mode Adapter Name Set Temporary IP Address Set Temporary IP Address Use BOOTP for IP Address Picture Browser IP Address This utility is designed to set the IP address of the target for a temporary time period. The IP address will reset after power is cycled. Please remember to download the hardware configuration immediately after using this tool. 器 Profinet DCP Subnet Mask VersaMotion Servo Configuration Tool Gateway IP Address Name Server IP Address VersaConf Safety Tool Max FTP Server Connections Network Time Sync Enter 12-digit MAC address using hexadecimal notation (six 2-digit pairs). Status Address Redundant IP I/O Scan Set IP Address to Set Set IP Enter IP address using dotted decimal notation. 0 . 0 . 0 Help Warning: ARP table caches the IP Address set using this tool after PC reboot in Windows 7. Use Clear Cache button to clear this cache. Clear Cache If your computer has multiple network interfaces, you may pick the one to use Enable interface selection 🥕 ... 📳 ... 🎏 ... 📳 V... 💡 I...

Figure 324: Set Temporary IP Address

8.3 Implementation

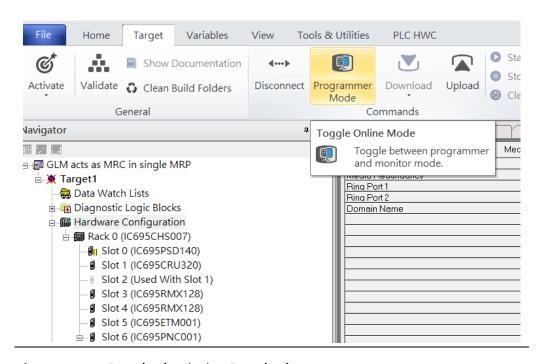

To download the configuration to hardware, the following steps shall be applied. First, press the **Connect** icon.

Figure 325: Connecting to Target

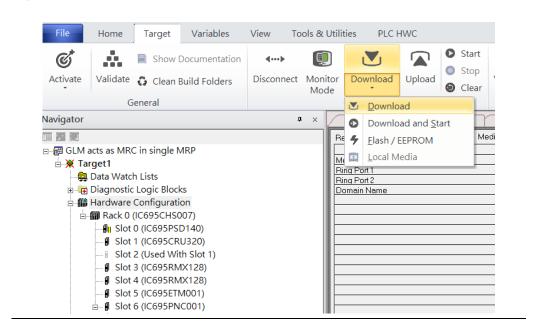

Then press the icon **Programmer Mode**.

Figure 326: Programmer Mode

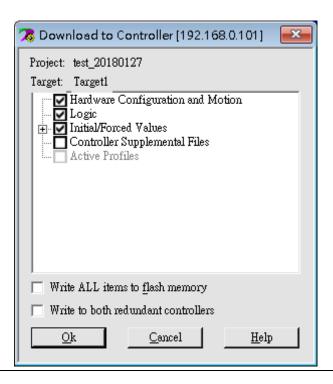

Then press icon **Download** and select **Download**.

Figure 327: Download

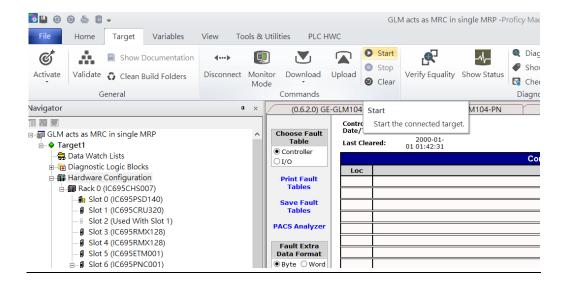

Then the dialogue is appeared to make sure the initialization procedure, select **OK**.

Figure 328: Download to Controller

After download completely, press icon **Start** to active PLC. Note: After downloading completely, switch CRU320 to **Run I/O Enable** and select **OK.** If PLC has started successfully, a message "The Controller was successfully started".

Figure 329: Start

General Contact Information

Home link: http://www.emerson.com/industrial-automation-controls

Knowledge Base: https://www.emerson.com/industrial-automation-controls/support

Technical Support

Americas

Phone: 1-888-565-4155

1-434-214-8532 (If toll free option is unavailable)

Customer Care (Quotes/Orders/Returns): customercare.mas@emerson.com

Technical Support: support.mas@emerson.com

Europe

Phone: +800-4444-8001

+420-225-379-328 (If toll free option is unavailable)

Customer Care (Quotes/Orders/Returns): customercare.emea.mas@emerson.com

Technical Support: support:mas.emea@emerson.com

Asia

Phone: +86-400-842-8599

+65-6955-9413 (All other Countries)

Customer Care (Quotes/Orders/Returns): customercare.cn.mas@emerson.com

Technical Support: <a href="mailto:support:sup

Any escalation request should be sent to: mas.sfdcescalation@emerson.com

Note: If the product is purchased through an Authorized Channel Partner, please contact the seller directly for any support.

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the purchaser.

© 2020 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

